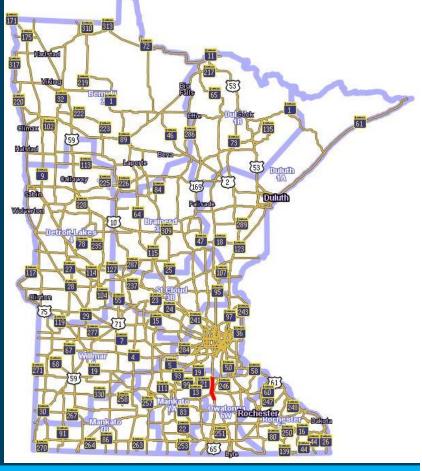
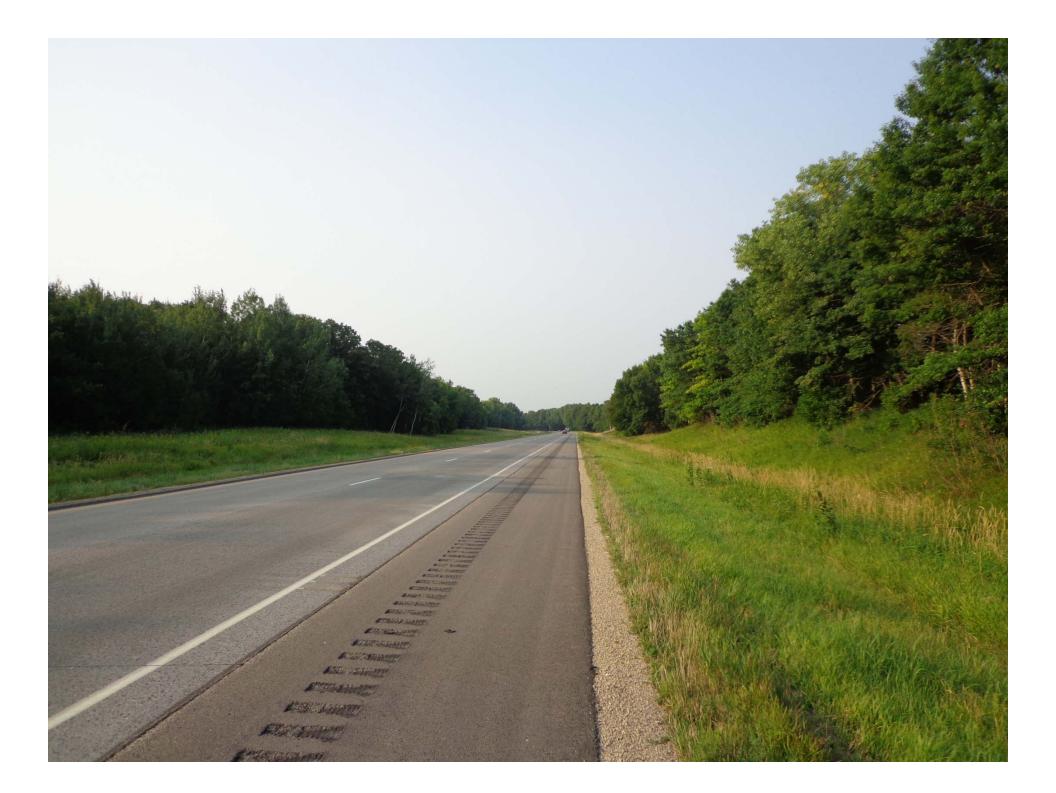


Development of Solar Power Systems for ITS Adam Wellner, MnDOT District 6

Presentation Outline

- Background
- Design Requirements
- Solar Design Process / Procedures
 - Battery Bank
 - Power Array
 - Environmental Factors
 - Other Considerations
- Challenges
- Cost Analysis
- Lessons Learned & Conclusions





Project Background

- Second phase installation of ITS devices along
 - I-35 near Faribault MN
- Primarily rural area
- 7 of 19 locations with no viable SOP

Use of renewable energy for ITS (in Minnesota)

- DMS system powered by solar was deployed
- Camera deployed using wind power
 - Later retrofitted to add solar panels to improve reliability – has history of maintenance problems

Design Requirements

- Minimize down time
- Minimize maintenance requirements
- Environmental factors
 - Solar Insolation
 - Temperature
- Use same devices as phase-I (prior project)
- Cost
 - Operational / Maintenance
 - Installation

Design Process

Determine Specific Design Requirements

Solar Array Design

Electrical System Design

Shade and Site Design

Power Demand

PTZ Camera <u>Power Requirements</u> Volts: 24 VDC Watts: 51 W

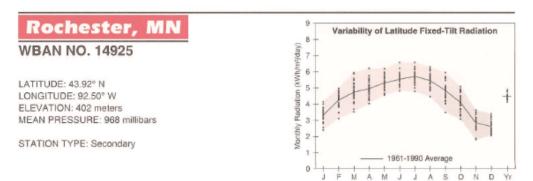
Fiber Optic Switch <u>Power Requirements</u> Volts: 10.5–60 VDC Watts: 24 W / 15 W

Total Power Demand (Average) Volts: 24 VDC Watts: 66 W Amps: 2.75 A

Climate Data

- Temperature
- Insolation
- Sun Path

- Solar Radiation Data Manual for Flat–Plate and Concentrating Collectors (Red Book)
- State Climatologist
- University of Oregon Solar Radiation Monitoring Laboratory



Solar Radiation for Flat-Plate Collectors Facing South at a Fixed Tilt (kWh/m²/day). Uncertainty ±9%

Tilt (°)		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average Min/Max	1.8 1.5/2.1	2.7 2.3/3.0	3.7 3.0/4.3	4.6 3.9/5.5	5.6 4.8/6.5	6.2 5.4/7.3	6.2 5.3/7.0	5.3 4.5/6.0	4.0 3.3/4.7	2.8 2.3/3.3	1.7 1.4/2.0	1.4	3.8 3.7/4.1
Latitude -15	Average Min/Max	2.9 2.2/3.6	3.9 2.9/4.5	4.6 3.5/5.6	5.1 4.1/6.3	5.7 4.9/6.6	6.0 5.3/7.1	6.2 5.2/7.1	5.7 4.7/6.5	4.8 3.6/5.8	3.8 3.0/4.7	2.6 1.7/3.2	2.3 1.8/2.9	4.5 4.1/4.9
Latitude	Average Min/Max	3.3 2.4/4.2	4.2 3.1/5.0	4.7 3.5/5.9	4.9 4.0/6.2	5.3 4.6/6.2	5.5 4.8/6.6	5.7 4.8/6.6	5.5 4.4/6.3	4.8 3.5/5.9	4.1 3.1/5.1	2.8 1.8/3.6	2.6 2.0/3.4	4.5
Latitude +15	Average Min/Max	3.6 2.5/4.5	4.4 3.2/5.2	4.7 3.4/6.0	4.6 3.8/5.8	4.7 4.1/5.4	4.8 4.2/5.6	5.0 4.2/5.7	4.9 4.0/5.7	4.6 3.3/5.7	4.1 3.0/5.1	2.9 1.8/3.8	2.8 2.2/3.7	4.3 3.9/4.6
90	Average Min/Max	3.5 2.4/4.4	4.1	3.9 2.7/5.3	3.2 2.7/3.9	2.8	2.7 2.5/3.1	2.9 2.5/3.2	3.2 2.6/3.6	3.4 2.4/4.2	3.4 2.5/4.3	2.7	2.7 2.1/3.7	3.2 2.9/3.5

Axis Tilt (°)		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average Min/Max	2.7 1.9/3.3	3.9 2.8/4.5	5.0 3.6/6.3	6.1 4.7/7.7	7.3 5.8/8.9	8.0 6.8/9.9	8.2 6.7/9.6	7.1 5.7/8.3	5.5 3.9/6.9	4.0 2.9/4.9	2.4 1.5/3.0	2.0	5.2 4.8/5.8
Latitude -15	Average Min/Max	3.5 2.5/4.4	4.8 3.3/5.7	5.7 4.0/7.3	6.5 5.0/8.4	7.5 5.9/9.1	8.0 6.8/10.0	8.3 6.7/9.7	7.5 5.9/8.8	6.1 4.2/7.7	4.7 3.4/6.0	3.0 1.8/3.9	2.7 2.1/3.5	5.7 5.2/6.4
Latitude	Average Min/Max	3.8 2.7/4.9	5.1 3.5/6.1	5.8 4.1/7.6	6.4 4.9/8.3	7.2 5.7/8.9	7.7	8.0 6.5/9.4	7.4 5.7/8.7	6.2 4.2/7.8	4.9 3.5/6.3	3.2 1.9/4.3	2.9 2.3/3.9	5.7 5.2/6.4
Latitude +15	Average Min/Max	4.0 2.8/5.2	5.2 3.5/6.2	5.8 4.0/7.6	6.1 4.7/8.0	6.8 5.3/8.4	7.2 6.1/9.0	7.5 6.1/8.8	7.0 5.4/8.3	6.0 4.0/7.6	5.0 3.5/6.3	3.3 1.9/4.4	3.1 2.4/4.1	5.6 5.0/6.3

Solar Radiation for 2-Axis Tracking Flat-Plate Collectors (kWh/m²/day), Uncertainty ±9%

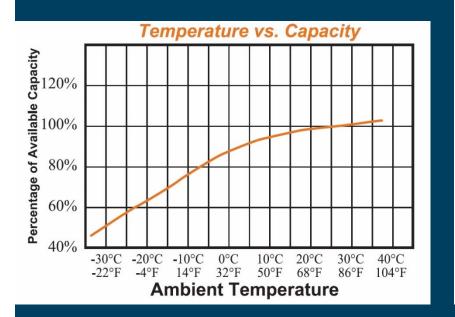
Tracker		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
2-Axis	Average Min/Max	4.1 2.8/5.2	5.2 3.6/6.2	5.8 4.1/7.6	6.5 5.0/8.4	7.6 6.0/9.3	8.2 7.0/10.3	8.5 6.9/9.9	7.6 5.9/8.9	6.2 4.2/7.8	5.0 3.6/6.3	3.3 1.9/4.4	3.1 2.4/4.2	5.9 5.3/6.6

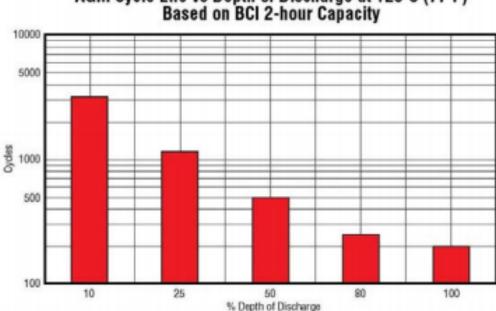
Direct Beam Solar Radiation for Concentrating Collectors (kWh/m²/day), Uncertainty ±8%

Tracker		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
1-Axis, E-W	Average	2.2	2.6	2.6	2.8	3.4	3.7	3.9	3.5	2.9	2.6	1.8	1.7	2.8
Horiz Axis	Min/Max	1.2/3.1	1.2/3.5	1.4/3.6	1.6/4.4	2.2/4.7	2.6/5.4	2.6/5.0	2.2/4.5	1.4/4.2	1.7/3.8	0.6/2.7	1.1/2.4	2.3/3.4
1-Axis, N-S	Average	1.5	2.2	2.8	3.6	4.4	4.9	5.2	4.6	3.5	2.5	1.3	1.0	3.1
Horiz Axis	Min/Max	0.8/2.1	0.9/3.0	1.5/3.9	2.0/5.5	2.8/6.3	3.6/7.1	3.6/6.6	3.0/5.9	1.7/5.0	1.5/3.6	0.4/2.0	0.7/1.5	2.6/3.8
1-Axis, N-S Tilt=Latitude	Average Min/Max	2.4 1.2/3.3	3.1	3.4 1.8/4.8	3.9 2.2/6.0	4.4 2.8/6.2	4.7 3.4/6.8	5.0 3.5/6.4	4.7 3.1/6.1	4.0 2.0/5.7	3.3 2.1/4.7	2.0 0.6/3.0	1.8	3.6
2-Axis	Average	2.6	3.2	3.4	3.9	4.7	5.1	5.4	4.9	4.0	3.4	2.1	1.9	3.7
	Min/Max	1.3/3.5	1.4/4.4	1.8/4.8	2.2/6.1	3.0/6.5	3.7/7.4	3.7/6.8	3.2/6.3	2.0/5.8	2.1/4.8	0.7/3.1	1.2/2.8	3.1/4.5

				Avera	ge Clim	atic Con	ditions						
Element	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Temperature (°C)	-11.4	-8.3	-1.2	7.2	13.8	19.2	21.6	20.1	15.1	8.8	0.3	-8.2	6.4
Daily Minimum Temp	-16.3	-13.3	-5.9	1.4	7.5	12.9	15.6	14.2	9.2	3.1	4.2	-12.6	0.9
Daily Maximum Temp	-6.6	-3.3	3.4	12.9	20.1	25.4	27.7	26.0	21.0	14.6		-3.9	11.8
Record Minimum Temp	-35.6	-33.9	-35.0	-15.0	-6.1	1.7	5.6	2.8	-5.0	-11.7	-28.9	-36.1	-36.1
Record Maximum Temp	12.8	17.2	26.1	32.8	33.3	38.3	38.9	37.2	35.0	31.1	22.8	16.7	38.9
HDD, Base 18.3°C	922	745	606	335	157	31	9	18	103	294	540	823	458.3
CDD, Base 18.3°C	0	0	0	0	16	56	111	74	6	0	0	0	262
Relative Humidity (%)	77	76	75	68	67	69	72	75	75	72	77	80	74
Wind Speed (m/s)	6.6	6.3	6.6	6.6	6.0	5.7	4.9	4.9	5.4	5.9	6.2	6.3	5.9

Tilt (")		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average	1.8	2.7	3.7	4.6	5.6	6.2	6.2	5.3	4.0	2.8	1.7	1.4	3.8
	Min/Max	1.5/2.1	2.3/3.0	3.0/4.3	3.9/5.5	4.8/6.5	5.4/7.3	5.3/7.0	4.5/6.0	3.3/4.7	2.3/3.3	1.4/2.0	1.2/1.7	3.7/4.1
Latitude -15	Average	2.9	3.9	4.6	5.1	5.7	6.0	6.2	5.7	4.8	3.8	2.6	2.3	4.5
	Min/Max	2.2/3.6	2.9/4.5	3.5/5.6	4.1/6.3	4.9/6.6	5.3/7.1	5.2/7.1	4.7/6.5	3.6/5.8	3.0/4.7	1.7/3.2	1.8/2.9	4.1/4.9
Latitude	Average	3.3	4.2	4.7	4.9	5.3	5.5	5.7	5.5	4.8	4.1	2.8	2.6	4.5
	Min/Max	2.4/4.2	3.1/5.0	3.5/5.9	4.0/6.2	4.6/6.2	4.8/6.6	4.8/6.6	4.4/6.3	3.5/5.9	3.1/5.1	1.8/3.6	2.0/3.4	4.1/4.9
Latitude +15	Average	3.6	4.4	4.7	4.6	4.7	4.8	5.0	4.9	4.6	4.1	2.9	2.8	4.3
	Min/Max	2.5/4.5	3.2/5.2	3.4/6.0	3.8/5.8	4.1/5.4	4.2/5.6	4.2/5.7	4.0/5.7	3.3/5.7	3.0/5.1	1.8/3.8	2.2/3.7	3.9/4.6
90	Average Min/Max	3.5 2.4/4.4	4.1 2.9/4.9	3.9 2.7/5.3	3.2 2.7/3.9	2.8	2.7 2.5/3.1	2.9 2.5/3.2	3.2 2.6/3.6	3.4 2.4/4.2	3,4 2,5/4,3	2.7	2.7 2.1/3.7	3.2 2.9/3.5





Design Battery Bank

- Power draw of equipment (2.75 A)
- Temperature
- Battery lifecycle

AGM Cycle Life vs Depth of Discharge at +25°C (77°F) Based on BCI 2-hour Capacity

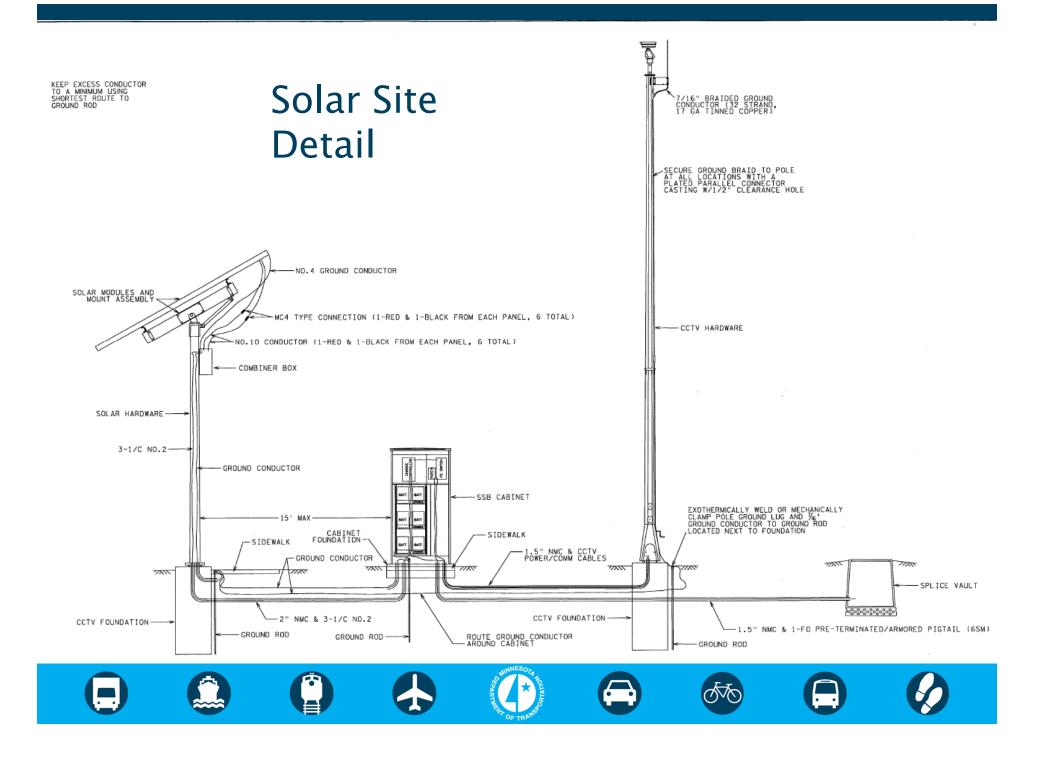
Solar Array Design

Solar isolation

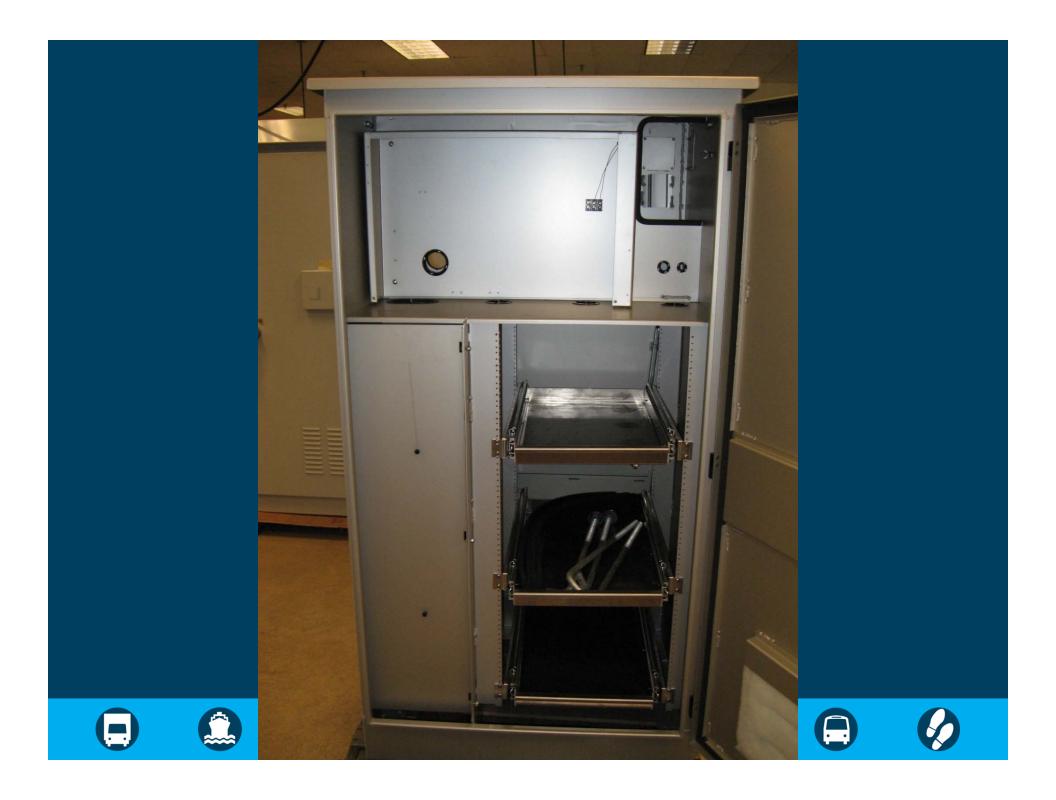
- Power output at standard test condition (1000 w/m^2)
- vs. measured condition (2.7 kWh / m^2 / day)

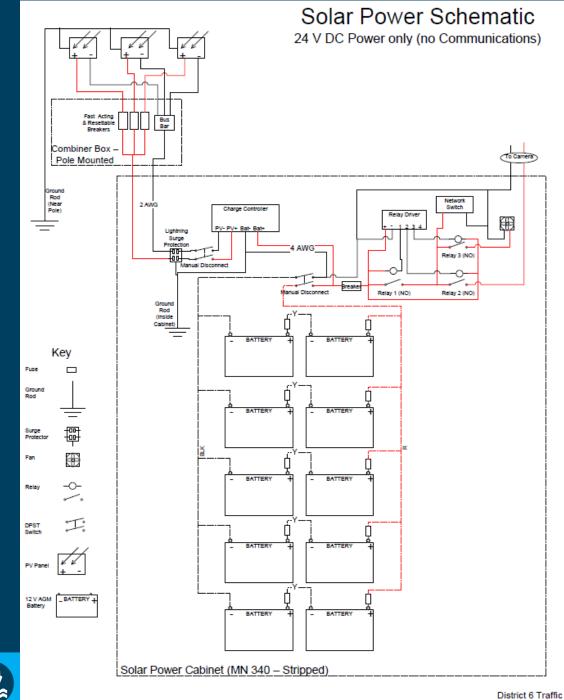
De-rating factors

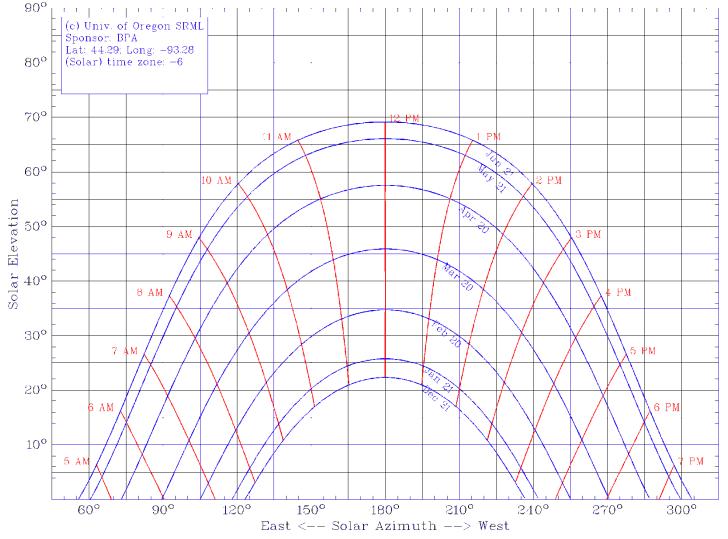
- Soil on panels
- Efficiency of equipment (charger)
- Age of panels


Other Factors

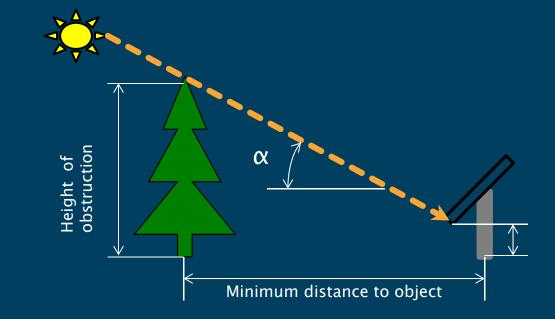
- Theft / Vandals pole height, mounting hardware (RTMC experience)
- Lightning protection (Electronic Communication)
- Structural (Structures & Foundations)
- Cabinet
- National Electric Code
- Network Connected Control and Monitoring

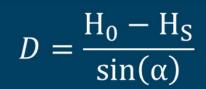






12/5/2012


Placement / Shade



Placement / Shade

Placement / Shade

Challenges

- Legal / legislative
- Extreme environmental demands
- Site accessibility / slopes

Cost Comparison (Installation)

Grid Connected Site \$28,693

- Service Cabinet
- Camera Pole
- Camera Cabinet
- Conductor
- Foundations

<u>Solar Site</u> \$37,735

- Cabinet
- "Solar Hardware"
- Solar Panels
- Solar Mount
- Camera Pole
- Conductor
- Foundations

5

Cost Comparisin (opperating)

	6 Batte	erie	es		8 Bat	ter	ies	G	irid Co	nnected		
Year	Costs	Present Value		Costs		Present Value		Costs		Present Value		
1	\$ 1,320	\$	1,320	\$	1,760	\$	1,760	\$	440	\$	440	
2		\$	-			\$	-	\$	440	\$	427	
3		\$	-			\$	-	\$	440	\$	415	
4	\$ 1,320	\$	1,208			\$	-	\$	440	\$	403	
5		\$	-	\$	1,760	\$	1,564	\$	440	\$	391	
6		\$	-			\$	-	\$	440	\$	380	
7	\$ 1,320	\$	1,105			\$	-	\$	440	\$	368	
8		\$	-			\$	-	\$	440	\$	358	
9		\$	-			\$	-	\$	440	\$	347	
		\$	3,633			\$	3,324			\$	3,529	

 $\overline{}$

Lessons Learned / Conclusions

- Solar industry lead-times
- Additional safety concerns
 - both sides of switch live
 - high current potential
 - Battery safety
- Solar Power is a feasible option for SOP problems

Resources

- ► NREL
- PVwatts
- ► Solar Power in Building Design by Peter Gevorian

•

