Next Generation Mobility Management in Connected Vehicle Environment

2012 National Rural ITS Conference
September 19, 2012

Yehuda Gross
USDOT ITS Joint Program Office

Gwo-Wei Torng
Noblis, Inc.
Connected Vehicle Research

- Connected Vehicle is a suite of technologies and applications that use wireless communications to provide **connectivity**:
 - Among vehicles of all types
 - Between vehicles and roadway infrastructure
 - Among vehicles, infrastructure and wireless consumer devices

All Roads, All Modes, All The Time!
Connected Environment
Connected Vehicle Program Structure

<table>
<thead>
<tr>
<th>Applications</th>
<th>Safety</th>
<th>Mobility</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2V</td>
<td>V2I</td>
<td>Safety Pilot</td>
<td>Real Time Data Capture & Management</td>
</tr>
</tbody>
</table>

Technology
- Harmonization of International Standards & Architecture
- Human Factors
- Systems Engineering
- Certification
- Test Environments

Policy
- Deployment Scenarios
- Financing & Investment Models
- Operations & Governance
- Institutional Issues
High Priority Transit Safety Scenarios

1. Right-Turn-In-Front Crash (V2V)

2. Pedestrian vs. Turning Bus Crash (V2I)

3. Bus Angle Crash At Intersection

4. Left-Turn Head-On Crash

5. Rear-End Crash At Stop/Intersection

6. Left-Turn Crash At Light Rail Grade Crossing
Pedestrian vs. Turning Bus Crashes

A pedestrian is crossing the street as the bus is making a turn

• Challenging scenario due to fact that pedestrians not equipped with safety awareness devices and so are difficult to detect
• Application will have to rely on infrastructure input as a proxy for actual pedestrian movement – a V2I Application
Design Illustration of Pedestrian vs. Turning Bus Safety Application
Right-Turn-In-Front Crashes

A motor vehicle turns right in front of the transit vehicle as it starts from a bus stop located in front of an intersection – a V2V application.
Design Illustration of Right-Turn-In-Front Safety Application
Transit Safety Research Next Steps

- Evaluate the outcomes of two safety applications
- Conduct more detailed analysis of transit crashes and prioritize future transit safety research
- Continue engaging transit stakeholders
- Collaborate with existing and future research for potential transit adaptation
Safety Pilot Model Deployment: Transit Applications Test Locations

- V2I Testing Location
- V2V Testing Locations

University Medical Center (school/employment)

Off campus housing (student/faculty/staff)
Transit for Mobility

<table>
<thead>
<tr>
<th>Applications</th>
<th>Safety</th>
<th>Mobility</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V2V</td>
<td>Real Time Data Capture & Management</td>
<td>AERIS</td>
</tr>
<tr>
<td></td>
<td>V2I</td>
<td>Dynamic Mobility Applications</td>
<td>Road Weather Applications</td>
</tr>
<tr>
<td></td>
<td>Safety Pilot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technology
- Harmonization of International Standards & Architecture
- Human Factors
- Systems Engineering
- Certification
- Test Environments

Policy
- Deployment Scenarios
- Financing & Investment Models
- Operations & Governance
- Institutional Issues
Integrated data environment further supports *intermodal mobility management* capability
Connected Vehicle Research for Mobility

Real-time Data Capture and Management (DCM)

- Vehicle Status Data
- Weather Data
- Truck Data
- Transit Data
- Infrastructure Status Data
- Wireless Device Data

Dynamic Mobility Applications (DMA)

- Reduce Speed 35 MPH
- Weather Application
- Real-Time Travel Info
- Fleet Management/Dynamic Route Guidance
- Signal Phase & Timing Adjusts Real-Time Conditions
- Safety Alerts and Warnings
- Real-time En-route Travel Apps

Data Environment

U.S. Department of Transportation
Data Environments and Application “Bundles”

90+ ideas → 30 applications → 7 bundles
Integrated Dynamic Transit Operations (IDTO) Bundle

- One of the seven mobility application “bundles”
- Led by Federal Transit Administration (FTA)
- Integrated transit operations that provide dynamic scheduling, dispatching, and routing of transit vehicles, and facilitate passenger connection protection and dynamic ridesharing:
 - Dynamic Transit Operations (T-DISP)
 - Connection Protection (T-CONNECT)
 - Dynamic Ridesharing (D-RIDE)
Integrated Vision of Mobility Management

- Consumer with Mobility Needs
- U.S. State & Local Government Funds, Policies, and Regulations
- One Call
- Funding Agencies
- Transportation Service Providers

- Employment
- Independence
- Health Care
- Family
- Education
- Recreation

- U.S. State & Local Government Funds, Policies, and Regulations
- Funding Agencies

- Transportation Service Providers
- One Call
- Consumer with Mobility Needs

- U.S. Department of Transportation
CASTLETON T-DISP

WASHINGTON ST.

JEFFERSON ST.

1ST STREET

Modified Transit Route

Original Transit Route

LINCOLN ST.

1

2

3

4

BUS STOP

BUS STOP

BUS STOP

U.S. Department of Transportation
IDTO Next Steps

- Complete IDTO functional and performance requirements
- Conduct IDTO prototype development and testing
 - "Phased" development
 - Full-and-Open competition
 - Teaming among public/private sectors
- Evaluate IDTO effectiveness and impacts
- Revise IDTO ConOps and requirements as needed
- Broaden field impacts thought knowledge transfer and stakeholder outreach
Multi-Modal Intelligent Traffic Signal System (M-ISIG) Bundle
M-ISIG

- Led by Federal Highway Administration (FHWA)
- Comprehensive traffic signal system for complex arterial networks (passenger vehicles, transit, pedestrians, freight, and emergency vehicles):
 - **Transit Signal Priority (TSP)**
 - **Mobile Accessible Pedestrian Signal System (PED-SIG)**
 - Intelligent Traffic Signal System (I-SIG)
 - **Freight Signal Priority (FSP)**
 - **Emergency Vehicle Preemption (PREEMPT)**
 - **Connected Eco Driving (ECO)**
Transit Signal Priority (TSP)

- Enables earlier, more accurate and continuous monitoring of transit vehicles as they approach and progress through the intersection, and potentially down an entire corridor.
- Selects the most appropriate priority strategy based on knowledge of up-to-the-second location and multiple conditionality criteria, such as:
 - Schedule/headway adherence
 - Passenger loads
 - Service type
 - Time of day
 - Peak direction
- Enables TSP on a network of arterials.
Mobile Accessible Pedestrian Signal System (PED-SIG)

- Allows an “automated pedestrian call” to be sent to the traffic controller from the smart phone of registered blind users after confirming the direction and orientation of the roadway that the pedestrian is intending to cross.

- Integrates information from:
 - roadside or intersection sensors
 - new forms of data from wirelessly connected pedestrian-carried mobile devices

- Communicates wirelessly with the traffic signal controller to obtain real-time SPAT information

- Informs the visually impaired pedestrian as to when to cross and how to remain aligned with the crosswalk.
Transit Connected Vehicle for Environment

Applications

<table>
<thead>
<tr>
<th>Safety</th>
<th>Mobility</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2V</td>
<td>Real Time Data Capture & Management</td>
<td>AERIS</td>
</tr>
<tr>
<td>V2I</td>
<td>Dynamic Mobility Applications</td>
<td>Road Weather Applications</td>
</tr>
<tr>
<td>Safety Pilot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technology

- Harmonization of International Standards & Architecture
- Human Factors
- Systems Engineering
- Certification
- Test Environments

Policy

- Deployment Scenarios
- Financing & Investment Models
- Operations & Governance
- Institutional Issues
AERIS Transformative Concepts
Examples of Transit Roles in AERIS Transformative Concepts

- **Eco-Signal Operations**
 - Eco-transit signal priority

- **Dynamic Eco-Lanes**
 - Transit dedicated lane and vehicle platooning

- **Dynamic Low Emissions Zones**
 - Incentivized choice transit travelers

- **Support for Alternative Fuel Vehicles**
 - AFV transit vehicles

- **Eco-Traveler Information**
 - Integrated intermodal traveler information supporting eco-traveling

- **Eco-Integrated Corridor Management**
 - Corridor load balancing and dynamic modal shift
Stay Connected

- www.its.dot.gov
 - Free webinars and public meetings
 - Conference sessions
 - Publications and news release
 - Procurement opportunities
- Peer-to-peer networking
- Transit connected vehicle stakeholders steering group
- Contact USDOT staff directly
For More Information.....

Yehuda Gross
Program Manager
USDOT ITS Joint Program Office
202-366-1988
yehuda.gross@dot.gov

www.its.dot.gov