Utilizing ITS to Reduce Truck Overturn Crashes Due to High Winds at Bordeaux, Wyoming

UNIVERSITY OF WYOMING

Outline

- Background
- Project Location
- Data Sources
- Data Analysis
- High Wind Warning System

Background

- Wyoming noted for frequent severe wind conditions especially at the southeastern part of the state.
- Many wind farms established due to the high wind conditions.
- Wind speeds reach 30 to 40 mph and wind gust speeds of 50 to 60 mph during the winter.

Background

- Wind Direction effect is greatest if it is perpendicular to the road direction.
- High profile vehicles (empty or lightly loaded) are vulnerable to the high wind.
- Previous research have investigated how wind speeds correlated with truck safety.

Research Objectives

- Conduct field studies to provide an overview of the study location and chose the suitable locations for installation of the monitoring equipment.
- Confirm the relation between high wind conditions and high risk of truck crashes.
- Determine appropriate threshold values for the high wind warning system.
- Analyze crash data to create baseline conditions to monitor the future effectiveness of the system.
- Develop final recommendations for the High Wind Warning System.

Project Location

Locating the Study Area

Data Sources

- Road Weather Information System (RWIS) Tower with 2 PTZ Cameras
- Two Wavetronix Speed Sensors

ITS Equipment

ITS Equipment

Speed Sensor Cabinet

ITS Equipment

HOBO Weather Station

CRASH VIDEO SNAPSHOTS

TRUCK CRASH FREQUENCY

CRASHES THAT OCCURRED DURING 2008 – 2010 WINTER SEASONS

Index	Crash Key	Milepost	Date	Wind Speed	Wind Gust Speed	Wind Direction
1	200820435	70.50	12/5/2008	53	73	W
2	200820436	70.25	12/5/2008	49	70	SW
3	200820441	70.00	12/17/2008	35	47	W
4	200820901	70.00	12/27/2008	50	66	SW
5	200820908	70.75	12/31/2008	40	62	SW
6	200820909	70.50	12/31/2008	45	67	SW
7	200822845	70.00	12/31/2008	47	71	SW
8	200900353	70.62	1/5/2009	58	76	W
9	200900354	70.60	1/5/2009	53	74	W
10	200901773	70.00	1/21/2009	40	57	SW
11	200902570	70.62	2/6/2009	45	62	SW
12	200902571	70.00	2/6/2009	55	68	SW

CRASHES THAT OCCURRED DURING 2008 – 2010 WINTER SEASONS

Index	Crash Key	Milepost	Date	Wind Speed	Wind Gust Speed	Wind Direction
13	200902572	70.63	2/6/2009	47	72	SW
14	200903550	69.98	3/8/2009	48	68	W
15	200903552	70.50	3/8/2009	45	73	W
16	200904562	69.88	3/8/2009	51	71	W
17	200903566	71.50	3/9/2009	9	11	NE
18	200915686	70.62	10/31/2009	50	63	SW
19	200918191	65.00	12/07/2010	6	11	Е
20	200918731	70.25	12/10/2009	35	55	SW
21	200918197	70.50	12/12/2009	51	70	W
22	201000873	70.60	01/12/2010	40	51	SW
23	201000879	70.50	01/18/2010	29	38	SW
24	201002729	69.10	02/03/2010	20	30	SW

Data Analysis

Multiple Logistic Regression Model

- Response Variable: Overturning Truck Crash, 1 is assigned for overturning and 0 otherwise
- Predictor Variables: All weather condition parameters

Modeling Methodology

- 95% confidence intervals
- All parameters included in initial model
- Parameters with p-value larger than 0.05 removed from model one at a time starting with largest p-value variable
- Filtering loop continue until all parameters have p-value < 0.05
- Hosmer and Lemeshow goodness-of-fit test to determine how well the model fit the data

Data Analysis

Multiple Logistic Regression Model Equation

$$E\{Y_i\} = \frac{exp^{(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}}{1 + exp^{(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}}$$

Model Output

	Initial	Model	Final Model		
Predictor Variable	Estimate	P-value	Estimate	P-value	
Intercept(β_0)	-1.7483	0.0782	-1.7522	0.0426	
Lighting Condition (β_1)	0.1952	0.8049	-	-	
Road Condition (β_2)	-2.6857	0.0061	-2.5628	0.0048	
Wind Speed(β_3)	0.1252	0.0801	0.0893	< 0.0001	
Wind Gust(β_4)	-0.035	0.5257	-	-	
Wind Direction Binary(β_5)	0.3387	0.7799	-	-	

Wind Speed and Truck Overturning Relationship

Vehicle Speeds at Different Wind Conditions

Vehicle Type	Category	Average Vehicle Speed (mph)	Standard Deviation
Cars	Wind Speed <=10mph	76.65	4.86
Cais	Wind Speed >=30mph	77.09	7.03
m 1	Wind Speed <= 10mph	69.75	8.42
Trucks	Wind Speed >=30mph	67.72	8.63

RWIS vs. HOBO

- RWIS located near the top of an adjacent hillside.
- HOBO located 40 feet near the roadside.
- Positive difference indicate
 RWIS Data > HOBO Data.
- RWIS wind speeds higher than HOBO wind speeds.
- Difference increases as the wind speed increases.

Truck Weight Analysis Result

Crash Frequency vs. Wind Speed

Operational Levels

- Level 1: 30mph wind speed threshold was recommended for advisory warning messages on the DMS's.
- Level 2: 40 mph wind speed threshold was determined for road closure to all high-profile, light-weight vehicles.
- Level 3: 45mph wind speed threshold was determined for road closure to all trucks.

High Wind Warning System

- DMS signs (2 were installed adjacent to the corridor)
- CB Wizard
- Highway Advisory Radio (HAR)
- ❖ 511 Phone Service
- Website
- ❖ Weigh-In-Motion (WIM)
- Over Height Vehicle Detector (OHVD)

Edward Offei eoffei@uwyo.edu

QUESTIONS?