

Outline

- Introduction
 - Methods of intersection control
 - Conditions where D-CS is appropriate
- Early deployment of D-CS
 - TxDOT results
 - FHWA results
- Discussion

Methods of Dilemma Zone Protection

- No detection upstream (stop line only)
- Single advance detectors
- Multiple advance detectors
 - Inductive loops
 - Magnetometers
 - Other point detectors
- Wavetronix SS-200 "Advance"
- Hybrid Detectors
- Detection-Control System

Single Advance Detectors

- Advantages
 - Well known concept
 - Quicker installation than multiple detectors
- Disadvantages
 - Loop failure rates may be high
 - Potential damage from roadside work
 - Exposure to traffic
 - Less efficient than multiple detectors
 - No special consideration for trucks

Multiple Advance Detectors

- Advantages
 - Well known concept and components
- Disadvantages
 - Loop failure rates may be high
 - Potential damage from roadside work
 - Exposure to traffic
 - Might not find adequate gap in high demand situations
 - No special consideration for trucks

Wavetronix Advance (SS-200)

- Advantages
 - Nothing in the pavement
 - Simple setup
 - Tracks vehicles in real time
 - Adapts to variations in vehicle speeds
- Disadvantages
 - Requires bucket truck to install
 - No left- or right-turn detection
 - Does not detect vehicles by lane
 - SS-200 max range is 600 ft from detector
 - Does not distinguish trucks (although SS200E does)
 - Indirect consideration of minor movements

Early Deployment of D-CS

- TxDOT Research
- FHWA Research

Background

- D-CS came from two different directions:
 - Need for a better system for high-speed signalized intersections
 - Mandatory speed reductions in Houston District

D-CS Overview

- Background
- Early development
- Modifications and additions
 - What worked
 - What didn't work

Detection-Control System

Assumptions:

- Vehicle speed remains constant on approach to signal
- Stopped queue has cleared before dilemma zone protection can begin
- The earlier green ends, the better for minor movements
- Ability to "look ahead" and find time to end limited by fastest vehicle speed

Early Modifications

- Two-stage control
 - Stage 1: D-CS must have empty dilemma zones to end phase
 - Stage 2: Up to one passenger car (NOT truck) may be in a dilemma zone in each lane and still have the phase end
- Dealing with external control lag
- PC-related issues and timing
- Dealing with external control quirks

Ideas That Worked

- Separate dilemma zones for cars and trucks
 - Truck drivers decide farther away from the intersection
 - To allow for this:
 - Car dilemma zones: 5.5 s 2.5 s
 - Truck dilemma zones: 7.0 s 2.5 s

Design Speed, mph	Passage Time, s	6 ft Detector Loops Loops Extend Across All Lanes (All Designs) (All Designs) (All Designs)	
70	1.2		
Distance from Stop L Travel Time to Stop L		600 475 350 l, s 5.6	
Design Speed, mph	Passage Time, s		
65	1.2		
Distance from Stop L Travel Time to Stop L		540 430 320 I, s 5.4	
Design Speed, mph	Passage Time, s		
60	1.2		
Distance from Stop L Travel Time to Stop L		475 375 275 , s 5.1	
Design Speed, mph	Passage Time, s		
55	1.4		
Distance from Stop L Travel Time to Stop L		415 320 225 , s 4.8	

TxDOT 70 mi/h design

Speeds protected: 70 mi/h →~58 mi/h

A vehicle traveling 55 mi/h cannot continuously actuate the existing detectors!

Detection-Control System

- Advantages
 - One detector layout for all speeds
 - Can protect vehicles of any type
 - Easy to specify on plans
- Disadvantages
 - Setup is critical
 - Needs algorithm running within controller or using external inputs
 - Major-minor isolated intersection only
 - Detector failures may cause considerable system degradation

General Guidance on D-CS Use

- Isolated full-actuated intersection
- Intersection of major road & minor road
- 85th percentile speed (or speed limit) > 45 mph
- Total turn percentage (right plus left) < 40%
- Truck traffic >10% (off-peak) or >5% (peak)
- Crash rates (rear-end & right angle) > similar local intersections

Comparison of Advance with D-CS

Wavetronix Advance	D-CS
Non-intrusive	Intrusive (loops, magnetometers)
Tracking (real-time)	Point detection
Area detection	Detection by lane
Classifies 80% of trucks	Classifies 95% of trucks
Requires bucket truck	Requires lane closure
Considers side-street delay indirectly	Considers side-street delay directly
Uncertain of accuracy in high volume	Works well in high speed, high volume
Uncertain of readiness for Conn. Veh.	Connected Vehicle potential
No special controller required	Requires special controller

TxDOT Evaluation of D-CS

- D-CS:
 - Reduces number of vehicles caught in DZ
 - Reduces number of trucks caught in DZ
 - Reduces frequency of RLR
 - Potentially reduces overall delay

TxDOT Implementation

Implementation Site ^a	Nearest	Major- Name	Road Chara Through Lanes	cteristics Advance Detection ^b	Years With Signal	D-CS Installation Date
	City					
<u>Loop 340/F.M. 3400</u>	Waco	Loop 340	2	None	>4	March 2003
U.S. 84/Williams Rd.	Bellmead	U.S. 84	4	Unsignalized	0	October 2003
<u>U.S. 82/F.M. 3092</u>	Gainesville	U.S. 82	4	Loop	>6	June 2003
U.S. 82/Weber Dr.	Gainesville	U.S. 82	4	Video	>6	July 2003
<u>U.S. 59/F.M. 819</u>	Lufkin	U.S. 59	4	Video	>4	June 2004
U.S. 281/Borgfeld Rd.	San Antonio	U.S. 281	4	Loop	1.5	August 2004
U.S. 84/F.M. 2837	Waco	U.S. 84	4	Loop	>3	January 2005
U.S. 59/F.M. 3129	Domino	U.S. 59	4	Video	>6	April 2005

^aSites identified by <u>underline</u> were evaluated in the before-after study.

^bAdvance detection used prior to the installation of D-CS. Loop: multiple advance inductive loop detectors. Video (video imaging detection system): multiple advance video detection zones.

TxDOT Findings: RLR

Site	Approach	Red-Light Violations (all vehicles)a				Red-Light Violations (heavy vehicles)a				a	
		Expected in	Observed in		Relative	5	Expected in	Observed		Relative	į
		"After"	"After"	(Change,	b	"After"	in "After"		Change,	b
		Period,	Period,		(%)		Period,	Period,		(%)	
		(veh)	(veh)				(veh)	(veh)			
Loop 340 &	Northbound	13.5	1		<u>-93</u>		4.3	0		-100	
F.M. 3400	Southbound	6.6	1		<u>-85</u>		1.9	1		<u>-46</u>	
U.S. 82 &	Eastbound	7.6	9		19		1.9	1		<u>-46</u>	
F.M. 3092	Westbound	11.8	6		<u>-49</u>		3.3	1		<u>-69</u>	
U.S. 82 &	Eastbound	5.2	2		<u>-61</u>		1.6	1		-37	
Weber Dr.	Westbound	4.7	2		<u>-57</u>		1.3	1		-22	
U.S. 59 &	Northbound	16.7	7		<u>-58</u>		3.3	1		<u>-69</u>	
F.M. 819	Southbound	24.2	5		<u>-79</u>		8.6	0		-100	
U.S. 281 &	Northbound	38.3	19		<u>-50</u>		1.9	0		-100	L
Borgfeld Rd.	Southbound	22.7	11		<u>-52</u>		2.1	0		-100	
Overall:		151.2	63		<u>-58</u>		30.0	6		<u>-80</u>	
Loop 340:		20.1	2		<u>-90</u>		6.2	1		<u>-84</u>	
	but Loop 340:	131.2	61		<u>-53</u>		23.8	5		<u>-79</u>	

^a Frequency of red-light violations during study.

^bRelative change = (Obs. After/Exp. After -1) × 100. Negative values of relative change indicate a reduction in violation frequency. <u>Underlined</u> values are statistically significant at 95 percent level of confidence.

TxDOT Findings: Crashes

Site	"Before" Study Period		Expected Crashes in "After" Period	"After Pe	Relative Change, ^a %	
	Years	Crashes	Arter Period	Years	Crashes	90
Loop 340/F.M. 3400	3.0	10	3.8	0.83	3	-21
U.S. 82/ F.M. 3092	3.0	7	4.2	1.67	4	-6
U.S. 82/Weber Dr.	3.0	8	4.3	1.58	2	-53
U.S. 59/F.M. 819	3.0	23	5.2	0.67	3	-42
U.S. 281/Borgfeld Rd.	1.5	13	5.5	0.58	2	<u>-64</u>
Overall:	13.5	61	23.0	5.33	14	<u>-39</u>

^aRelative change = (Obs. After/Exp. After −1) × 100. Negative values of relative change indicate a reduction in crash frequency. <u>Underlined</u> values are statistically significant at 95 percent level of confidence.

TxDOT Findings: Delays & Stops

Site	Approach	Total Control Delay			Total Vehicles Stopping			
		Expected	Observed	Relative	Expected	Observed	Relative	
		in "After"	in "After"	Change, a, b	in "After"	in "After"	Change, a, b	
		Period,	Period,	(%)	Period,	Period ,	(%)	
		(hours)	(hours)		(veh)	(veh)		
Loop 340 &		2.0	1.6	-20	289	217	<u>-25</u>	
F.M. 3400	Southbound	1.4	1.5	7	230	190	-17	
U.S. 82 &	Eastbound	6.8	6.4	-7	748	654	-13	
F.M. 3092	Westbound	7.3	6.4	-12	802	711	<u>-11</u>	
U.S. 82 &	Eastbound	0.4	0.3	<u>-42</u>	73	51	<u>-30</u>	
Weber Dr.	Westbound	0.4	0.2	<u>-44</u>	75	46	<u>-38</u>	
U.S. 59 &	Northbound	15.7	13.2	<u>-16</u>	1324	1221	-8	
F.M. 819	Southbound	14.2	11.5	<u>-19</u>	1315	1237	-6	
U.S. 281 &	Northbound	3.2	1.6	<u>-49</u>	484	283	<u>-42</u>	
Borgfeld Rd.	Southbound	6.5	7.4	13	753	953	<u>26</u>	
Overall:		58.0	50.0	<u>-14</u>	6093	5563	<u>-9</u>	

^a Relative change = (After/Before −1)× 100.

^b Negative values denote a reduction. <u>Underlined</u> values are statistically significant at 95 percent level of confidence.

FHWA Evaluation of D-CS

Site Description	Near City, State	Cabinet Type	Controller	
U.S. 27/Pines Blvd	Ft. Lauderdale, FL	Naztec TS-2	Naztec 2070L	
U.S. 27/Griffin Rd.	Ft. Lauderdale, FL	Naztec TS-2	Naztec 2070L	
U.S. 27/Johnson St.	Ft. Lauderdale, FL	Ft. Lauderdale, FL Naztec TS-2		
U.S. 24/Main St.	Peoria, IL	Naztec TS-2	Naztec 2070L	
U.S. 24/Cummings La.	Peoria, IL	Naztec TS-2	Naztec 2070L	
La 3162/La 3235	New Orleans, LA	Naztec TS-2	Naztec 2070L	
U.S. 281/E. Borgfeld Dr.	San Antonio, TX	Eagle TS-2	Naztec 2070L	
U.S. 84/Speegleville Rd.	Waco, TX	Eagle TS-1	PC with D-CS	

FHWA: RLR Violation Ratesa

Observation Period	RLR per 1,000 vehicles	RLR per 10,000 veh-cycles		
Before	9.0	1.9		
After	1.6	0.3		
Percent Change b	-82	-82		
Average ^c	5.3	1.1		

^a Overall average rates based on total observations for all sites.

^b Percent change = 100 x (After/Before - 1.0).

^c RLR per 10,000 veh-cycle = count of red-light violations x 10,000 x Σ study hours / (Σvehicles x Σcycles).

FHWA: Total Violation Rates

			Cycle	No. of RLR	No. of	
Observation		Flow Rate a,	Length b,	Violations a,	Vehicles	No. of
Period	Cycles	veh/h	sec	veh	in the DZ a	Max Outs
Before	663	8511	81	75	161	30
After	648	8430	81	13	45	11
% Change ^c	-2.3	-1.0	0.0	-82	-73	-51
Total	1,311	16,941	81	88	206	41

^a Flow rate and counts include all vehicles, including passenger cars and heavy vehicles.

^b Cycle length represents an average length.

^c Percent change = 100 x (After/Before - 1.0)

FHWA: Conclusions

- D-CS
 - Reduced RLR by 82 percent
 - Reduced vehicles in DZ by 73 percent
 - Reduced max-outs by 51 percent
- Naztec was only controller
 - One D-CS manufacturer was a limitation
 - Research results should encourage others

CURRENT FHWA D-CS DEPLOYMENT

D-CS Deployment Objectives

- Improve safety at rural high speed signalized intersections
- Make D-CS technology available to all states
 - Affordable cost
 - Wider availability in other controller platforms
- Develop marketing and training material

Framework of Design Specifications

- Minimum level of vehicle detection
- Required controller processing power
- Selection of vehicle detection technologies
- Unified signal phase to speed trap mapping
- Unified data structure of vehicle information
- D-CS module
- Diagnose and failure handling module

D-CS Implementation

- New platforms representing future direction of signal controller technologies (CV)
- Support firmware upgrade
- Legacy platforms with large installation bases at rural high speed intersections
- Affordable implementation cost
- Allow for expansion to larger intersections

Verification Plan

- Environment under which verification plan(s) were developed
- Methods and data to be used to verify compliance of each functional requirement
- Traffic demand scenarios for use to emulate
 - Demand likely satisfy D-CS stage 1 requirement
 - Demand likely exceeds D-CS stage 1 condition, but satisfies D-CS stage 2 condition
 - Demand exceeds D-CS stage 2 condition and would result in system max-out
- Prefer unified verification plan but can accept platform dependent verification plan

QUESTIONS?