Myriad Urban & Rural Uses of Bluetooth-Derived Travel Times

Adam Lyons
Director of Marketing
Iteris, Inc.
Market for Travel Time Systems

• For metropolitan/urban environments, there is inadequate coverage and data for accurate travel times.

• Vehicle travel times are an excellent and direct measure of traffic flow.

• **Travel Time = Measure of Effectiveness**

Source: Skyline Products
Arterial T/T Estimation Issues

- Traffic signals
- Mounting or housing locations
- Smaller sample sizes
- Vehicles diverting out of study zone
- Vehicles making brief detours or stops
Current Travel Time Collection Methods

• Floating car runs
 – Temporary studies
 – Typically used for verification of other technologies

• Vehicle probe data
 – Real-time data, highly reliable on freeways
 – Limited coverage on arterials (getting better)

• Toll tags
 – Higher material and maintenance cost
 – Reliable for tollways, limited on arterials

• Radar
 – Spot speeds only, estimates travel time
 – Good traffic volume counter

• Loops
 – Excellent traffic volume counter
 – Higher maintenance cost
 – Long-time use and experience by agencies

• Magnetometer
 – Newer technology
 – Requires in-ground sensors = higher maintenance, limited life
MAC Address Matching Technology

- **Agencies want a cost-effective travel time system that delivers accurate real-time data**

- Bluetooth (or Wi-Fi) MAC address matching travel time systems provide that by being:
 - Low cost
 - Reliable
 - Accurate
 - Low maintenance
 - Low risk
 - Proven - *Many studies done around the world verifying data sets, accuracy, and value*
Cost Comparison

Reference: Texas Transportation Institute

<table>
<thead>
<tr>
<th>Technology</th>
<th>Estimated Cost (Per Mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toll Tags</td>
<td>$25,000</td>
</tr>
<tr>
<td>Dual Loops</td>
<td>$10,000</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>$5,000</td>
</tr>
<tr>
<td>Private Sector</td>
<td>$0</td>
</tr>
<tr>
<td>Radar</td>
<td>$5,000</td>
</tr>
<tr>
<td>Bluetooth/Wi-Fi</td>
<td>$0</td>
</tr>
</tbody>
</table>
Bluetooth/Wi-Fi Technology

![Diagram of Bluetooth/Wi-Fi Technology](image_url)

- **Roadside Detection System A**
 - CPU Processor
 - Bluetooth radio adapter
 - Bluetooth antenna
 - Field software component

- **Roadside Detection System B**
 - CPU Processor
 - Bluetooth radio adapter
 - Bluetooth antenna
 - Field software component

- **Bluetooth Enabled Phone**

- **MAC Address Matching Software**
 - Data collection server
 - Travel time algorithm
 - Data archival

- **MAC Address**
 - MAC Address
 - Detector ID
 - Timestamp

- **A to B**
 - Travel Time: 1 Minute
 - Speed: 60 MPH
Deployment Options

- Existing Cabinets
- POE
- Portable
- AC Powered
- Solar Powered

Source: TTI
Source: Iteris
Source: Iteris
Source: DigiWest
Source: TrafficCast
Source: TTI
Host Software Considerations

• Host SW uses sophisticated algorithms and filtering methods of the MAC IDs to process matches and calculate speeds and travel times

• Hosted Model
 – Outside hosting performed by vendor
 – Recurring licensing fees
 – Data is outside control of agency
 – Additional monthly or annual fees

• Agency-owned Model
 – Software resides within agency network
 – All data is owned by agency
 – Control over algorithms/filtering choices
 – No recurring fees
Typical Equipment Costing

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Equipment Cost</th>
<th>Maintenance Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Unit</td>
<td>$5k - $7k</td>
<td>High</td>
</tr>
<tr>
<td>AC/POE Standalone Unit</td>
<td>$4k - $5k</td>
<td>Some</td>
</tr>
<tr>
<td>Rental Unit</td>
<td>$700 - $1000 per week per field unit</td>
<td>High</td>
</tr>
<tr>
<td>In-Cabinet Unit</td>
<td>$3.5k - $4k</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Equipment Cost</th>
<th>Maintenance Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hosted Software Initial Integration Fees</td>
<td>$100 - $700 per month per field unit</td>
<td></td>
</tr>
<tr>
<td>Agency Owned Software</td>
<td>None if agency supplies server</td>
<td>None</td>
</tr>
</tbody>
</table>

Note: not including any cell phone service if required – est. $60/month/unit
Bluetooth or Wi-Fi?

• **Bluetooth**
 – Continually *scans* for devices in proximity
 – Fast “grab” of MAC address, useful at all speeds
 – Very high **re-identification** rate – 90% and up

• **Wi-Fi**
 – Continually *listens* for devices in proximity
 – Field units act as a hotspot
 – Slower “grab” of MAC address
 – Results have shown that the **re-identification** rate of Wi-Fi devices is much lower than BT (~1/10TH)
Bluetooth or Wi-Fi?

Bluetooth
- 3-20% of volume includes Bluetooth-enabled devices
 - Mostly in-vehicle systems
- Bluetooth is a proven data set
- Bluetooth and Wi-Fi provide virtually identical travel time patterns in free flow conditions

Wi-Fi
- Could be as much as 10X more reads at a given field unit
 - Mostly cell phones
- More reads can provide more robust O/D data
- Only useful when the traffic has the opportunity to slow or stop
What are we going to do with all this data?

1. Congestion Mapping & 511
2. Smart Work Zones
3. Origin-Destination Information
4. Populating Dynamic Message Signs
5. Rural Applications
6. ATMS Integration
7. Performance Measurement/Operations
Congestion Mapping

- Situational awareness
VDOT IS USING BLUETOOTH DATA TO FILL IN THE GAPS THAT INRIX DATA IS NOT AVAILABLE FOR
What are we going to do with all this data?

1. Congestion Mapping & 511
2. Smart Work Zones
3. Origin-Destination Information
4. Populating Dynamic Message Signs
5. Rural Applications
6. ATMS Integration
7. Performance Measurement/Operations
Smart Work Zones

• Utilizing technology to inform drivers about upcoming work zone information
• Portable CMS
• Variable Speed Limit Signs
• Phone Apps
Smart Work Zones

- IH-35 Mobility Program
 - Run by TTI
- Bluetooth Sensors
- Real-time Website Data
- Portable CMS
What are we going to do with all this data?

1. Congestion Mapping & 511
2. Smart Work Zones
3. Origin-Destination Information
4. Populating Dynamic Message Signs
5. Rural Applications
6. ATMS Integration
7. Performance Measurement/Operations
Origin-Destination

- Much lower cost than ALPR
- Useful for planners and transportation engineers
- Determine traffic patterns
- O/D Matrix Generation
- Analyze preferred routes through a network

Source: Stantec
What are we going to do with all this data?

1. Congestion Mapping & 511
2. Smart Work Zones
3. Origin-Destination Information
4. Populating Dynamic Message Signs
5. Rural Applications
6. ATMS Integration
7. Performance Measurement/Operations
Freeway Dynamic Message Signs (DMS)

Source: Iteris

Source: Skyline Products

Source: Iteris

Source: TransCore

Source: Google Images
Arterial DMS

Source: Skyline Products

Source: Google Images

Source: Google Images

Source: Google Images

Innovation for better mobility
Virginia DOT Example

Innovation for better mobility
Arlington County, VA Example

Source: Iteris
What are we going to do with all this data?

1. Congestion Mapping & 511
2. Smart Work Zones
3. Origin-Destination Information
4. Populating Dynamic Message Signs
5. Rural Applications
6. ATMS Integration
7. Performance Measurement/Operations
Rural Applications for Bluetooth

- Very cost effective solution for rural highways
 - Low maintenance
 - Solar powered
- Excellent capture rate, even at high speeds
- 5-10 miles spacing recommended
 - Greater spacing can be used

Source: TTI
What are we going to do with all this data?

1. Congestion Mapping & 511
2. Smart Work Zones
3. Origin-Destination Information
4. Populating Dynamic Message Signs
5. Rural Applications
6. ATMS Integration
7. Performance Measurement/Operations
Innovation for better mobility

ATMS Integration

- Typically utilize an XML output that external programs can extract data sets from
City of Lakewood, CO Example

- Data integrated into TransSuite
 - Output of travel times on congestion map
 - Incorporate into corridor travel times for distribution
 - Mobile apps for travel time and congestion data display
 - Overlaying data on time-space diagram
Innovation for better mobility

Time-space diagram

Solid line is design speed Dash line is actual speed from Bluetooth data
What are we going to do with all this data?

1. Congestion Mapping & 511
2. Smart Work Zones
3. Origin-Destination Information
4. Populating Dynamic Message Signs
5. Rural Applications
6. ATMS Integration
7. Performance Measurement/Operations
Performance Measures

- MAP-21
- Travel Time Reliability
- Aging of timing plans
- Trigger for Adaptive signal parameter review
- Validation of re-timing efforts

Reviewing historical data for trends to perform before/after studies
Other Applications

- Intersection Delay Calculations
 - Duration Data or Passage Time
 - Analyze time that devices are moving through a particular intersection to estimate delay
 - Evaluate delay for different turning movements
Summary

• Many Operational Use Applications
• Non-Intrusive Deployments
• Low Maintenance
• High Accuracy
• Proven Technology
• Lower Cost
Questions?

Contact Information

Adam Lyons
Director of Marketing
Iteris, Inc.
Phone: 303-990-4783
Email: aml@iteris.com
www.iteris.com