Development Of a New Rural Intersection Conflict Warning System: ALERT Project

Taek M. Kwon, Ph.D University of Minnesota Duluth

Victor Lund, P.E.

St. Louis County, Minnesota

Outline

- Introduction
- System description
- Evaluation results
- Conclusion

 Advanced LED Warning System for Rural InTersections (ALERT)

Intersection Safety Performance in Minnesota

- For the ten years period (2002-2011), 43% of all intersection crashes occurred at unsignalized intersections.
- 65% of fatal and serious injury crashes occurred at unsignalized intersections.
- Rural Two-Way Stop Control intersections accounted for 76% of these crashes.

Other Factors

- Static intersection warning signs appear to be ineffective
- Sight restrictions increase risk of crash (vertical and horizontal curves)
- Limited local funding for major intersection improvements (i.e. realignment, grade corrections)
- Difficult to justify major improvement projects, due to low traffic volumes

System Goals

- Low cost, low maintenance, dynamic interaction warning system based upon presence of traffic
- Effect a reduction in speed for vehicles on the major approach when approaching the intersection
 - System warns driver on the major approach of a vehicle stopped or entering the intersection from the minor approach
- Reduce the probability of a conflict at the intersection between a turning vehicle from the minor approach and a vehicle on the major approach
 - System warns driver on minor approach of an approaching vehicle on the major approach

System Design Approach

- System will utilize existing "off-the-shelf" technologies
- Can be assembled by traffic/sign technicians
- Wireless communications between components; no "hardwire connections"; no conduits
- Nonintrusive vehicle detection (e.g. radar)
- Utilize alternative energy source (solar) and avoid AC
- Utilize LED blinker signs

ALERT Projects

- Funds were provided by the Minnesota Local Road Research Board (LRRB)
- ALERT-1
 - Started Feb 14, 2008
 - Ended Feb 28, 2011
 - Intersection: Eagle Lake Rd/West Tischer Rd, Duluth MN
- ALERT-2
 - Started Dec 14, 2011
 - Ended Jun 30, 2014
 - Intersection: Lismore Rd/Lakewood Rd, Duluth MN

Lismore/Lakewood Rd Intersection

ALERT-2 Installation: Lismore Rd/Lakewood Rd Intersection

Data Collection

- Two network video cameras (PoE) and one server
- Event data logger (records signal changes)
- Mail-in survey within a two mile radius of the study intersection

Video Data Collection

Lismore Road

Intersection

Battery Power

Signs with a Radar Detector

	ALERT-1	ALERT-2	
Average Daily Power Demand	26Wh	36Wh	
Battery Capacity	106Wh	2,688Wh	
Days of Storage Without Charge	7 days	25 days	
Solar Panel	20W	20W	

Signs without a Radar Detector

	ALERT-1	ALERT-2
Average Daily Power Demand	8Wh	7.8Wh
Battery Capacity	67Wh	1248Wh
Days of Storage Without Charge	7 days	45 days
Solar Panel	14W	20W

Average Conflict/No-Conflict Speed Difference on the Major Road After Installation of the ALERT-2 System

	No-Conflict	Conflict		
Peak Time	51.63 mph	47.7 mph		
Off Peak Time	51.88 mph	48.06 mph		
Weekday	51.71 mph	47.89 mph		
Weekend	51.97 mph	48.31 mph		
September 2012	52.02 mph	49.10 mph		
October 2012	51.54 mph	48.29 mph		
November 2012	52.62 mph	47.93 mph		
December 2012	51.12 mph	46.51 mph		
January 2013	50.85 mph	46.62 mph		
February 2013	51.53 mph	47.71 mph		
March 2013	51.66 mph	48.1 mph		
April 2013	51.06 mph	47.31 mph		
May 2013	51.7 mph	48.19 mph		
June 2013	52.29 mph	48.18 mph		

Average Speed Decrease: 3.89 mph or 0.93 sec extra time

Roll-Through Percentage of Before and After Installation of ALERT-2

	Before Installation Percent of Roll- throughs	After Installation Percent of Roll- throughs
Right-turn	16.45 %	9.93 %
Through	13.29 %	2.89 %
Left-turn	8.63 %	5.18 %
All turns combined	28.15 %	14.27 %

Roll-Through Percentage of Conflict and no-Conflict Case After Installation of ALERT-2

	Percent of Roll- Throughs Under no- Conflict	Percent of Roll- Throughs Under Conflict
Right-turn	8.7 %	0.76 %
Through	2.78 %	0.19 %
Left-turn	4.74 %	0.21 %
All turns combined	16.22 %	1.16 %

Mail-in Survey on Residents Living in Two Mile Radius

Statement	Strongly Agree	Agree	Total Positive	Disagree	Strongly Disagree	Total Negative
The warning system is easy to understand.	55%	39%	94%	5%	1%	6%
The warning system improved the safety of the intersection.	56%	36%	92%	1%	7%	8%
The vehicle activated Blinker STOP signs obtain my attention.	70%	28%	98%	1%	1%	2%
The warning system could be used at other intersections.	53%	38%	91%	5%	4%	9%

Another System In Minnesota

- Rural Intersection Conflict Warning System (RICWC)
- Uses AC power and loop detectors
- Uses a traditional traffic controller to control warning signals
- Uses single lens flashing beacon
- \$100,000 per system
- Suited for urban intersections

Conclusions

- Reduced vehicle speeds on the main approach by average 3.89mph
- Increased wait time on the minor approaches by about 4 seconds
- Nearly zero roll-throughs on conflict cases
- 92% of survey responses agree or strongly agree that the system improved safety

Future Studies

- Drivers are still treating LED blinking warning signs as traffic signals (cause of roll-throughs)
- Design challenges for battery charge when sunny areas are unavailable in the intersection
- Plug-and-play control circuit, not requiring any programming

Questions?

