Estimated Economic Impacts of Hurricane Katrina on Transportation Systems in Mississippi

Zhitong Huang
Li Zhang
Department of Civil and Environmental Engineering
Mississippi State University

Mingzhou Jin
Industrial and Systems Engineering
The University of Tennessee at Knoxville
Summaries

- Introduction
- Introduce of This Research
- Categories of Transportation Economic Impacts
- Indirect Transportation Economic Impacts of Intermodal Transportation Systems
- Case Study
- Conclusions
Introduction

- Significant direct economic loss due to restoration of damaged or destroyed infrastructures.
- Significant indirect economic loss due to the additional rerouting cost of freight and passenger transportation.
- A framework is necessary to evaluate these direct and indirect economic costs.
- Objective: propose a framework for estimating transportation economic impacts due to disasters by transportation network modeling tools.
- Major Concern: the highway and railroad systems
Study Area

Figure 1 The Highway System of the Study Area

Source: Figure 2 is obtained from the Mississippi Department of Transportation (MDOT) website (http://gomdot.com/Divisions/IntermodalPlanning/Resources/Maps/StateHighwayMaps.aspx).
FIGURE 2 Methodology of Transportation Economic Impact Study
Categories of Transportation Economic Impacts

- **Direct transportation economic impacts**: economic losses because of restoration damaged or destroyed infrastructures

- **Indirect transportation economic impacts**: economic losses due to additional rerouting cost of detoured freight and passenger transportation

 - *The Highway System*
 - Cost of rerouting delays
 - Cost of congestion delays
 - Cost of additional emissions and pavement maintenance

 - *The Railroad System*
 - Cost of rerouting delays
Indirect Transportation Economic Impacts of Intermodal Transportation Systems

- The Highway System:
 - *Method: link-based method (easily identify volume change of a link)*

 1) *Cost of rerouting delays*
 - Measure the economic cost due to additional travel time of rerouted vehicles
 - Determined factors: additional VHTs of detoured vehicles and their value of time

 2) *Cost of congestion delays*
 - Measure the cost due to additional VHTs of resident vehicles
 - Determined factors: additional VHTs of resident vehicles and their value of time
3) Cost of additional emissions and pavement maintenance
 - Measure the cost due to extra emissions and pavement maintenance of detoured vehicles
 - Determined factors: additional VMTs of detoured vehicles and unit cost of emissions and pavement maintenance

The Railroad System:
- Method: a route-based calculation method
- Cost of rerouting delays
 - include costs of additional travel distance of rerouted trains and rent fee of right-of-way
 - Determined factors: detoured train volume, travel distances before and after a disaster, unit cost of operation and unit rent fee of right-of-way
Case Study

- Background

- Analysis of Economic Impacts to the Highway System
 - Network Modeling Tools
 - Scenarios Analysis in VISUM
 - Results

- Analysis of Economic Impacts to the Railroad System

- Results of Transportation Economic Impacts of the Intermodal Transportation Systems

- Analysis of Case Study

Background

- **Study area:** the Gulf Coast Region in Mississippi
- **Study period:** one week after Katrina occurred

Major Disruptions in the Highway System:
- 1) sections of U.S. 90 from the Bay St. Louis Bridge to the Biloxi Bay Bridge (including the two bridges) were disrupted [1];
- 2) the capacity of the section of I-10 over the Pascagoula River Basin was reduced by 50% due to the disaster [1].

Major Disruptions in the Railroad System: CSX tracks from Mobile (AL) to New Orleans (LA) [2].
Network Modeling Tools

- **TransCAD:**
 - Generated travel demand data: 2005 (pre-disaster) and 2006 (post-disaster).
 - Provided data for building VISUM network: such as number of lanes, link length, speed limits, etc.

- **VISUM:**
 - Traffic assignment method: the Equilibrium assignment in VISUM
 - Applied continuous equilibrium assignments for each hour of a day, i.e., 24 times, to capture hourly variations in daily traffic pattern.
Scenario Analysis in VISUM

- **Scenario 0** (original network before the disaster): complete highway network and pre-disaster demand data
- **Scenario 1** (original network after the disaster): a hypothetical scenario; complete highway network and the post-disaster demand data
- **Scenario 2** (disrupted network after the disaster): actual road network during the study period and the post-disaster demand data
Results: Traffic Assignment

Table 1 Daily Total VHTs of POVs and Trucks in the Three Scenarios

<table>
<thead>
<tr>
<th></th>
<th>Scenario 0</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Daily Difference Between Scenario 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>POV (h)</td>
<td>186,050</td>
<td>181,329</td>
<td>196,486</td>
<td>15,158</td>
</tr>
<tr>
<td>Truck (h)</td>
<td>41,184</td>
<td>29,867</td>
<td>31,371</td>
<td>1,504</td>
</tr>
</tbody>
</table>

Table 2 Daily Total VMTs of All vehicles in the Three Scenarios

<table>
<thead>
<tr>
<th></th>
<th>Scenario 0</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Daily Difference Between Scenario 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Miles)</td>
<td>10,576,234</td>
<td>9,901,950</td>
<td>10,087,136</td>
<td>185,187</td>
</tr>
</tbody>
</table>
Results: Daily Indirect Transportation Economic losses of the Highway System

Table 3 Daily Costs of Operation, Emission and Pavement Maintenance in Scenarios 0, 1 and 2

<table>
<thead>
<tr>
<th></th>
<th>Scenario 0</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Cost ($)</td>
<td>8,248,201</td>
<td>7,179,372</td>
<td>7,696,451</td>
</tr>
<tr>
<td>Emission Cost ($)</td>
<td>454,778</td>
<td>425,785</td>
<td>451,433</td>
</tr>
<tr>
<td>Pavement Maintenance Cost ($)</td>
<td>74,033</td>
<td>69,313</td>
<td>70,611</td>
</tr>
<tr>
<td>Total Cost ($)</td>
<td>8,777,012</td>
<td>7,674,470</td>
<td>8,200,810</td>
</tr>
<tr>
<td>Travel Cost Per Veh-Mile ($)</td>
<td>0.83</td>
<td>0.78</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Table 4 Indirect Costs of Disruptions to the Highway System

<table>
<thead>
<tr>
<th></th>
<th>Cost of rerouting delay and congestion delay ($)</th>
<th>Cost of additional emission and pavement maintenance ($)</th>
<th>Indirect cost of the highway system impacted by Katrina ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (Daily)</td>
<td>517,079</td>
<td>9,261</td>
<td>526,340</td>
</tr>
</tbody>
</table>
Results: Transportation Economic Losses of the Highway System (Entire Disaster Period)

- **Total Direct Cost**: used $700 million
 - the obtained reconstruction cost: the Biloxi Bay Bridge ($347,214,473) and the Bay St. Louis Bridge ($283,543,242) (B.B. House, unpublished data).

- **Total Indirect Cost**: $393.4 million
 - **880 days**: total detour period
 - **615 days**: the period that both Bay St. Louis Bridge and Biloxi Bay Bridge were completely closed due to disruptions.
Analysis of Economic Impacts to the Railroad System

- Daily Detoured Train Volume: 20 trains per day [3]
- Two parts of a rerouting route from Mobile to New Orleans: route A (95 miles) and route B (110 miles) [3].
- Original route of CSX tracks: route C (140 Miles) [3].

![Rail Map of the Gulf Coast Region in the State of Mississippi](http://www.gomdot.com/Divisions/IntermodalPlanning/Resources/Maps/pdf/Rails.pdf)

Source: Figure 3 is obtained from the MDOT website
Results of Transportation Economic Impacts to the Railroad System

- **Daily indirect cost for the railroad system**: $530,855
 - Additional operating cost: $197,730
 - Rent cost of right-of-way: $333,125

- **Cost of entire disaster period for the railroad system**: more than $379.6 million
 - Direct cost: $300 million [2].
 - Indirect cost (diversion cost): over $79.6 million for the entire rerouting period (over five months [2])
Results of Transportation Economic Impacts of the Intermodal Transportation Systems

Table 5 Transportation Economic Impacts of Hurricane Katrina in the State of Mississippi

<table>
<thead>
<tr>
<th></th>
<th>The Highway System</th>
<th>The Railroad System</th>
<th>Intermodal Transportation Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Cost ($)</td>
<td>700 million</td>
<td>300 million [2]</td>
<td>1 billion</td>
</tr>
<tr>
<td>Indirect Cost ($)</td>
<td>Daily 526,340</td>
<td>530,855</td>
<td>1,057,195</td>
</tr>
<tr>
<td></td>
<td>Total 393.4 million</td>
<td>79.6 million</td>
<td>473 million</td>
</tr>
<tr>
<td>Total Cost ($)</td>
<td>1.1 billion</td>
<td>379.6 million</td>
<td>1.5 billion</td>
</tr>
</tbody>
</table>
Analysis of the Case Study

- Two major factors for economic loss of highways: rerouting delays and congestion delays ($517,079 (daily); 98.24% of the total daily indirect cost)

- Detoured POVs is the major factor of the costs of rerouting delays and congestion delays:
 - Three times more than the trucks; account for 75.66% of total
 - Reason: account for 90.1% of post-disaster daily travel demand

- Cost of emissions and pavement maintenance: did not significantly impact the economy; however, would impact air quality.
 - Additional emissions of all rerouted vehicles: 164.8 kg of total HC, 1,735.2 kg of CO and 240.7 kg of NOx

- For the railroad system, the rent cost of right-of-way ($333,125) is the major component of the total daily indirect cost ($530,855).
Conclusions

- In this study, we presented a framework that incorporated transportation network modeling tools for estimating the economic impacts on intermodal transportation systems due to system disruptions by a disaster.

- The major component of the daily indirect cost: the highway system (rerouting and congestion delays); the railroad system (rent cost of right-of-way).

- A major factor need to be considered for transportation economic impact study: economic losses due to the rerouting passenger cars and non-freight vehicles.
Thanks!
Reference

