Estimated Economic Impacts of Hurricane Katrina on Transportation Systems in Mississippi

Zhitong Huang Li Zhang Department of Civil and Environmental Engineering Mississippi State University

> Mingzhou Jin Industrial and Systems Engineering The University of Tennessee at Knoxville

Summaries

- Introduction
- Introduce of This Research
- Categories of Transportation Economic Impacts
- Indirect Transportation Economic Impacts of Intermodal Transportation Systems
- Case Study
- Conclusions

Introduction

- Significant direct economic loss due to restoration of damaged or destroyed infrastructures.
- Significant indirect economic loss due to the additional rerouting cost of freight and passenger transportation.
- A framework is necessary to evaluate these direct and indirect economic costs.
- Objective: propose a framework for estimating transportation economic impacts due to disasters by transportation network modeling tools
- Major Concern: the highway and railroad systems

Study Area

Figure 1 The Highway System of the Study Area

Source: Figure 2 is obtained from the Mississippi Department of Transportation (MDOT) website <u>(http://gomdot.com/Divisions/IntermodalPlanning/Resources/Maps/StateHighwayMaps.aspx)</u>.

Categories of Transportation Economic Impacts

- **Direct transportation economic impacts**: economic losses because of restoration damaged or destroyed infrastructures
- **Indirect transportation economic impacts**: economic losses due to additional rerouting cost of detoured freight and passenger transportation
 - The Highway System
 - Cost of rerouting delays
 - Cost of congestion delays
 - Cost of additional emissions and pavement maintenance
 - The Railroad System
 - Cost of rerouting delays

Indirect Transportation Economic Impacts of Intermodal Transportation Systems

> The Highway System:

- Method: link-based method (easily identify volume change of a link)
- 1) Cost of rerouting delays
 - Measure the economic cost due to additional travel time of rerouted vehicles
 - Determined factors: additional VHTs of detoured vehicles and their value of time
- 2) Cost of congestion delays

- Measure the cost due to additional VHTs of resident vehicles
- Determined factors: additional VHTs of resident vehicles and their value of time

Indirect Transportation Economic Impacts of Intermodal Transportation Systems (cont.)

- 3) Cost of additional emissions and pavement maintenance
 - Measure the cost due to extra emissions and pavement maintenance of detoured vehicles
 - Determined factors: additional VMTs of detoured vehicles and unit cost of emissions and pavement maintenance

The Railroad System:

- Method: a route-based calculation method
- Cost of rerouting delays

- include costs of additional travel distance of rerouted trains and rent fee of right-of-way
- Determined factors: detoured train volume, travel distances before and after a disaster, unit cost of operation and unit rent fee of right-of-way

Case Study

- Background
- Analysis of Economic Impacts to the Highway System
 - Network Modeling Tools
 - Scenarios Analysis in VISUM
 - Results
- Analysis of Economic Impacts to the Railroad System
- Results of Transportation Economic Impacts of the Intermodal Transportation Systems
- Analysis of Case Study

Background

- **Study area**: the Gulf Coast Region in Mississippi
- **Study period**: one week after Katrina occurred
- Major Disruptions in the Highway System:
 - 1) sections of U.S. 90 from the Bay St. Louis Bridge to the Biloxi Bay Bridge (including the two bridges) were disrupted [1];
 - 2) the capacity of the section of I-10 over the Pascagoula River Basin was reduced by 50% due to the disaster [1].
- Major Disruptions in the Railroad System: CSX tracks from Mobile (AL) to New Orleans (LA) [2].

Analysis of Economic Impacts to the Highway System

Network Modeling Tools

• TransCAD:

- Generated travel demand data: 2005 (pre-disaster) and 2006 (post-disaster).
- Provided data for building VISUM network: such as number of lanes, link length, speed limits, etc.

• VISUM:

- Traffic assignment method: the Equilibrium assignment in VISUM
- Applied continuous equilibrium assignments for each hour of a day, i.e., 24 times, to capture hourly variations in daily traffic pattern.

Scenario Analysis in VISUM

- Scenario 0 (original network before the disaster): complete highway network and pre-disaster demand data
- Scenario 1 (original network after the disaster): a hypothetical scenario; complete highway network and the post-disaster demand data
- Scenario 2 (disrupted network after the disaster): actual road network during the study period and the post-disaster demand data

Results: Traffic Assignment

Table 1 Daily Total VHTs of POVs and Trucks in the Three Scenarios

	Scenario 0	Scenario 1	Scenario 2	Daily Difference Between Scenario 1 and 2
POV (h)	186,050	181,329	196,486	15,158
Truck (h)	41,184	29,867	31,371	1,504

Table 2 Daily Total VMTs of All vehicles in the Three Scenarios

	Scenario 0	Scenario 1	Scenario 2	Daily Difference Between Scenario 1 and 2
(Miles)	10,576,234	9,901,950	10,087,136	185,187

Results: Daily Indirect Transportation Economic losses of the Highway System

Table 3 Daily Costs of Operation, Emission and Pavement Maintenance in Scenarios 0, 1 and 2

	Scenario 0			Scenario 1			Scenario 2		
	Operating Cost (\$)	Emission Cost (\$)	Pavement Maintenance Cost (\$)	Operating Cost (\$)	Emission Cost (\$)	Pavement Maintenance Cost (\$)	Operating Cost (\$)	Emission Cost (\$)	Pavement Maintenance Cost (\$)
Daily Cost (\$)	8,248,201	454,778	74,033	7,179,372	425,785	69,313	7,696,451	433,748	70,611
Total Cost (\$)	8,777,012			7,674,470		8,200,810			
Travel Cost Per Veh-Mile (\$)	0.83			0.78		0.81			

Table 4 Indirect Costs of Disruptions to the Highway System

	Cost of rerouting delay	Cost of additional emission	Indirect cost of the highway		
	and congestion delay (\$)	and pavement maintenance (\$)	system impacted by Katrina (\$)		
Total (Daily)	517,079	9,261	526,340		

Results: Transportation Economic Losses of the Highway System (Entire Disaster Period)

> Total Direct Cost: used \$700 million

 the obtained reconstruction cost: the Biloxi Bay Bridge (\$347,214,473) and the Bay St. Louis Bridge (\$283,543,242) (B.B. House, unpublished data).

> Total Indirect Cost: \$393.4 million

- 880 days: total detour period
- 615 days: the period that both Bay St. Louis Bridge and Biloxi Bay Bridge were completely closed due to disruptions.
 Daily Cost

Analysis of Economic Impacts to the Railroad System

- Daily Detoured Train Volume: 20 trains per day [3]
- Two parts of a rerouting route from Mobile to New Orleans: route A (95 miles) and route B (110 miles) [3].
- Original route of CSX tracks: route C (140 Miles) [3].

Results of Transportation Economic Impacts to the Railroad System

- **Daily indirect cost for the railroad system**: \$530,855
 - Additional operating cost : \$197,730
 - Rent cost of right-of-way: \$333,125
- Cost of entire disaster period for the railroad system: more than \$379.6 million
 - direct cost \$300 million [2].
 - Indirect cost (diversion cost) : over \$79.6 million for the entire rerouting period (over five months [2])

Results of Transportation Economic Impacts of the Intermodal Transportation Systems

Table 5 Transportation Economic Impacts of Hurricane Katrina in the State of Mississippi

		The Highway System	The Railroad System	Intermodal Transportation Systems
Direct Co (\$)	st	700 million	300 million [2]	1 billion
Indirect Cost	Daily	526,340	530,855	1,057,195
(\$)	Total	393.4 million	79.6 million	473 million
Total Cost (\$)		1.1 billion	379.6 million	1.5 billion

Analysis of the Case Study

- Two major factors for economic loss of highways: rerouting delays and congestion delays (\$517,079 (daily); 98.24% of the total daily indirect cost)
- Detoured POVs is the major factor of the costs of rerouting delays and congestion delays:
 - Three times more than the trucks; account for 75.66% of total
 - Reason: account for 90.1% of post-disaster daily travel demand
- Cost of emissions and pavement maintenance: did not significantly impact the economy; however, would impact air quality.
 - Additional emissions of all rerouted vehicles: 164.8 kg of total HC, 1,735.2 kg of CO and 240.7 kg of NOx
- For the railroad system, the rent cost of right-of-way (\$333,125) is the major component of the total daily indirect cost (\$530,855).

Conclusions

- In this study, we presented a framework that incorporated transportation network modeling tools for estimating the economic impacts on intermodal transportation systems due to system disruptions by a disaster.
- The major component of the daily indirect cost: the highway system (rerouting and congestion delays); the railroad system (rent cost of right-of-way).
- A major factor need to be considered for transportation economic impact study: economic losses due to the rerouting passenger cars and non-freight vehicles.

Thanks !

Reference

- [1] Zhang, L., et al., Framework of Calculating The Measures of Resilience(MOR) For Intermodal Transportation Systems. 2010, Mississippi State University. p. 65.
- [2] Grenzeback, L.R. and A.T. Lukmann, *Case Study of the Transportation* Sector's Response to and Recovery from Hurricanes Katrina and Rita, in *Transportation Research*. 2009, Cambridge Systematics Inc.
- [3] DMJM Harris, Statewide Rail Needs Assessment, Phase 7 CSXT Relocation Assessment in Response to Hurricane Katrina, Task 1: Alternative Temporary CSXT Rerouting. 2005.

