ITS TRUCK ACTIVITIES

Kate Hartman
ITS Joint Program Office

National Rural ITS Conference
Biloxi MS
September 17, 2012
ITS Research = Multimodal and Connected

To Improve Safety, Mobility and Environment

Research of technologies and applications that use wireless communications to provide connectivity:

- Among vehicles of all types
- Between vehicles and roadway infrastructure
- Among vehicles, infrastructure and wireless consumer devices

FCC Allocated Spectrum at 5.9 GHz for Transportation Safety (known as DSRC)
Major Objectives:

- Move aggressively on vehicle to vehicle communications
 - Regulatory Decision on In-Vehicle Equipment by 2013 (cars) and 2014 (trucks)
- Accelerate in-vehicle technology
 - Basic Safety Messaging
 - Aftermarket Safety Systems
 - Enables safety and active traffic management
- Accelerate infrastructure communications capability
 - Signal Phase and Timing (SPaT) as initial focus
 - Enables safety, mobility, and environmental applications
- Multi-modal pilot deployments for high-value applications
- Monitor and evaluate driver distraction issues
- Understand data and communications needs (DSRC/other) of transformative mobility applications – and the potential benefits of these applications
ITS Research Program Components

Applications
- Safety
 - V2V
 - V2I
 - Safety Pilot
- Mobility
 - Real Time Data Capture & Management
 - Dynamic Mobility Applications
- Environment
 - AERIS
 - Road Weather Applications

Technology
- Harmonization of International Standards & Architecture
- Human Factors
- Systems Engineering
- Certification
- Test Environments

Policy
- Deployment Scenarios
- Financing & Investment Models
- Operations & Governance
- Institutional Issues
USDOT TRUCK ITS Research Plan for Wireless Connectivity – Final 7-27-11

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4Q</td>
<td>1Q</td>
<td>2Q</td>
<td>3Q</td>
<td>4Q</td>
</tr>
<tr>
<td>SRI Apps Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRI ConOps - 9/20/2011</td>
<td></td>
<td></td>
<td></td>
<td>SRI Deployment Recommendations and Guidelines</td>
</tr>
<tr>
<td>SRI Reqs Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRI Arch & Design</td>
<td></td>
<td>Develop & Test Prototype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRI Requirements & Architecture - 1/19/2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV FOT Planning</td>
<td>Buildup</td>
<td>CV FOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Roadside Deployment Guidelines and Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track 1</td>
<td>Smart Roadside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track 2</td>
<td>Related Research</td>
<td>Wireless Roadside Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Electronic Screening at International Borders Model Deployment Initiative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Universal Truck Identification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bridge Hit SBIR</td>
<td></td>
</tr>
<tr>
<td>Track 3</td>
<td>Vehicle to Vehicle Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DVI Needs Specification</td>
<td>Safety Pilot DVI Criteria</td>
<td>CV DVI Guidelines</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Develop Performance Requirements</td>
<td>CV V2V Safety Workshop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV Interoperability Issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV Retrofit Safety Device</td>
<td>Objective Test Procedures</td>
<td>Interoperability Testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrated CV Builds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV Driver Clinics</td>
<td>Performance Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Estimate CV Safety Benefits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Performance Specifications & Test Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NHTSA Agency Decision (CV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regional Pilots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track 4</td>
<td>Safety Pilot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSM Transmission Device</td>
<td>2011 World Congress</td>
<td>Model Deployment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Model Deployment</td>
<td>Post-Model Deployment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V2V Benefits</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NHTSA Agency Decision (LV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent Evaluation of Testing Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track 5</td>
<td>Mobility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRATIS (Freight Advanced Traveler Information System) ConOps Development</td>
<td>FRATIS Applications Development and Readiness Testing</td>
<td>FRATIS Operational Testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track 6</td>
<td>Policy & Standards</td>
<td>CV Standards Message Definition & Participation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CV Policy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OVERVIEW of PROJECTS

• Connected Commercial Vehicle

• Smart Roadside

• FRATIS
Connected Commercial Vehicles
Trucks and V2V/Safety Pilot - Connected Commercial Vehicle (CCV) Safety Applications

OVERVIEW

- Safety Pilot Model Deployment
 - 3 Fully Integrated Tractors
 - 16 Retrofit Safety Device Kits (2 Teams)
- Vehicle to Vehicle (V2V) Applications
 - Forward Collision Warning
 - Electronic Emergency Brake Light (EEBL)
 - Blind Spot Warning/
 Lane Change Assist
 - Intersection Movement Assist
- Vehicle to Infrastructure (V2I) Applications
 - Curve Overspeed Warning
 - Bridge Height Inform
CCV Safety Applications Project: Motivation

- According to the 2009 Large Truck Crash Overview
 - Large trucks accounted for 10% of all vehicle miles traveled and 4% of all registered vehicles in the United States.
 - In motor vehicle crashes, large trucks represented:
 - 7% of vehicles in fatal crashes, 2% of vehicles in injury crashes, 3% of vehicles in property-damage-only crashes.
 - In 75% of the fatal crashes and 67% of the nonfatal crashes involving large trucks, the first harmful event was a collision with another vehicle in transport.
 - In two-vehicle fatal rear-end crashes, passenger vehicles struck large trucks in the rear approximately four times more often than large trucks struck passenger vehicles in the rear—17% versus 4%.

- Connected Vehicle Technology can help overcome driver distraction, obstructed/limited visibility due to weather or other vehicles, and driver judgment errors that contribute to large truck crashes.
CCV Safety Applications Project: Purpose

- Support USDOT Safety Pilot objectives for commercial vehicles including:
 - Demonstrate V2V and V2I safety-related applications in a real-world environment
 - Collect V2V safety benefits data to support NHTSA 2014 agency decision process for commercial vehicle implementation
 - Evaluate the scalability, security, and interoperability of DSRC devices
 - Collect data for later use by other researchers

- Commercial vehicle specific results will be shared with the commercial vehicle community
CCV Safety Applications Project: Objectives

- Integrate wireless DSRC technology into selected commercial vehicles.

- Develop and demonstrate research prototypes of vehicle-to-vehicle crash avoidance safety applications on commercial vehicles:
 - Emergency Electronic Brake Light, Forward Collision Warning, Lane Change Assist, Intersection Movement Assist

- Develop and demonstrate research examples of vehicle-to-infrastructure safety applications:
 - Curve Over-speed Warning, Bridge Height Inform

- Instrument the trucks with onboard Data Acquisition Systems to collect safety and performance data.

- Support vehicles in connected vehicle research and testing activities including:
 - Application Interoperability and Performance Testing by the USDOT
 - Driver Acceptance Clinics by the Project Team
 - Model Deployment of Safety Applications by the Safety Pilot Conductor
 - Application Objective Testing by USDOT
CCV Safety Applications Project: Team

- Multi-Modal USDOT Contract and Advisory Team
 - ITS Joint Program Office
 - National Highway Traffic Safety Administration
 - Federal Motor Carrier Safety Administration
 - Federal Highway Administration

- Project Team
 - Battelle
 - Program Manager and Driver Clinic Conductor
 - Mercedes Benz Research and Development North America (MBRDNA)
 - Connected Vehicle Safety Applications Developer
 - DENSO INTERNATIONAL North America Research Laboratory (NARL)
 - Onboard Equipment Platform and Wireless Communications Supplier
 - University of Michigan Transportation Research Institute (UMTRI)
 - Data Acquisition System Provider and Performance Testing Evaluator
 - Meritor WABCO
 - Commercial Vehicle Crash Avoidance Systems Supplier
 - Daimler Trucks North America (DTNA) Advanced Engineering NAFTA
 - Heavy Truck OEM and CAN Integration Support
CCV Safety Applications Project: Driver Acceptance Clinic Overview

- Objective
 - Evaluate Driver Acceptance of V2V applications
 - Surveys and direct observation of driver responses to warnings
 - Drivers with valid CDL in good health
 - System Performance Tests
 - Coordinated with the Small Vehicle Clinics and Volpe Independent Evaluator

Site 1
Transportation Research Center & Proving Ground
East Liberty, Ohio

Site 2
Former Alameda Naval Air Station
Connected Commercial Vehicles – Retrofit Safety Devices

Commercial Vehicle Retrofit Safety Device (RSD) -

- **Objectives**: Create RSD’s for testing and participation in Safety Pilot. RSD kits are being developed with V2V safety applications for retrofitting on fleet vehicles in the Model Deployment. This will provide additional data necessary by adding more trucks with V2V systems for the 2014 NHTSA Decision.

- Two awards from same procurement
 - Battelle teamed with Denso, Meritor WABCO, Mercedes, Daimler Trucks and UMTRI
 - Cambridge Systematics teamed with Southwest Research Institute and Volvo

- 16 trucks will be fitted with RSDs for Model Deployment (8 from each team)
 - Battelle RSD applications - FCW, BSW, IMA, EEBL, CSW
 - Cambridge RSD applications - FCW, EEBL, CSW

- **Project Accomplishments to date**
 - Developed Self-certification Test Plans
 - Created Architecture and Design Specifications

- **Planned accomplishments**
 - Both teams are on schedule to deliver RSDs for Model Deployment
CCV Safety Applications Project: Status Update

- Hardware installation completed on Integrated Trucks
- Base applications development completed
- Integrated tractors participated in Safety Pilot interoperability testing with CAMP vehicles, Aftermarket Safety Devices and Vehicle Awareness Devices
- Driver Acceptance Clinics conducted at TRC (Ohio) in July (TRC) and in Alameda California in August
- Integrated Trucks in Safety Pilot Model Deployment, Retrofit Safety Device Trucks by end of September
Connected Commercial Vehicles – Safety Pilot Related Activities

- **Objective Test Development**
 - Awarded to NHTSA’s Vehicle Research Test Center East Liberty, OH March 2012
 - Project runs through March 2013
 - Develop objective test procedures to evaluate heavy truck V2V systems
 - Evaluate RSD kits installation and functionality before they go UMTRI for installation on fleet vehicles in Model Deployment

- **Independent Evaluation for Trucks in Safety Pilot**
 - Awarded to Volpe in March 2012
 - Task to analyze truck data (both integrated and RSD) from Safety Pilot
 - Calculate safety benefits and conduct analysis to support 2014 NHTSA Decision
Smart Roadside
What if......

• Compliant carriers could not only bypass inspection stations, but could achieve higher safety ratings by doing so?

• Carriers could receive real time notification about compliance issues with their drivers and vehicles?

• Drivers could receive information on the availability of parking along their route?
Smart Roadside

- Wireless Roadside Inspection Program
- Universal Identification
- Electronic Screening/Virtual Weigh Stations
- Truck Parking Program
Smart Roadside

- Partnership between FMCSA and FHWA to enhance truck enforcement activities and increase mobility

- 2008 Smart Roadside Workshop
 - Commercial vehicle safety, security and mobility systems should be linked into a coordinated roadside program.

- Keys to Smart Roadside Initiative Success
 - Interoperable technologies and information sharing between in-vehicle, government office systems, and carrier office systems.
 - Leverage stakeholders’ current technology investments in order to augment existing programs and support new activities.
Smart Roadside Vision

- Highway facilities and key nodes on the freight system (ports and terminals, international border crossings, toll plazas, weigh stations, and other check points) share data in order to:
 - Focus enforcement resources on high-risk carriers, vehicles, and drivers
 - Manage the flow of commercial vehicle traffic
 - Help prevent crashes and other incidents
 - Reduce unnecessary delay for commercial vehicles, and thereby improve associated energy consumption and emissions
Smart Roadside Scope

- Inventory Tracking and Tracing Systems
- Commercial Vehicle Information Systems and Networks
- Border Crossing
- Cross-Town Improvement Program
- Virtual Weigh Stations and E-Screening
- Container Tracking Systems
- Wireless Inspections
- Advanced Traveler Information Systems
- Electronic Tolling
- Electronic Freight Management
- USDOT Truck Parking Programs
- Road Weather Information Systems
- U.S. Department of Transportation
Trucks and Vehicle-2-Infrastructure
Smart Roadside Summary

• **Smart Roadside Initiative**

• **Objectives:** To identify and integrate truck-specific roadside technology, developing a Concept of Operations, and testing prototype(s) of Smart Roadside Applications.

• **Awarded to SAIC, project team comprised of:**
 - North Dakota State’s Upper Great Plains Transportation Institute (UGPTI)
 - American Transportation Research Institute (ATRI)
 - Delcan Corporation
 - Commercial Vehicle Safety Alliance (CVSA)

• **Applications include:**
 - Wireless Roadside Inspections
 - Universal Truck Identification
 - Virtual Weigh Station/Electronic Screening
 - Truck Parking Programs

• **Project Accomplishments to date**
 - Project and systems engineering management plans
 - Applications analysis and assessments of deployed systems
 - Applications analysis and assessments of research projects
 - Concept of Operations stakeholder walkthroughs

• **Planned accomplishments**
 - Complete Concept of Operations
 - Prototype Testing development underway
 - Award Benefits and Experimental Test Design/Build up projects
FRATIS
Dynamic Mobility Program

Real-time Data Capture and Management

Dynamic Mobility Applications

- Vehicle Status Data
- Weather Data
- Truck Data
- Transit Data
- Infrastructure Status Data
- Data Environment
- Location Data

- Reduce Speed 35 MPH
- Transit Signal Priority
- Weather Application
- Real-Time Travel Info
- Fleet Management/Dynamic Route Guidance
- Signal Phase & Timing Adjusts Real-Time Conditions
- Safety Alerts and Warnings

U.S. Department of Transportation
FRATIS - BACKGROUND

DMA Freight Problem Statement: Lack of Advanced Traveler Information has negative effect on
- Efficient Movement of Freight Transportation
- Logistics Management Systems
- Environment of Neighboring Communities
- Energy Consumption
- Safety of the Traveling Public

DMA Proposed Freight Solution: Develop Freight Advanced Traveler Information (FRATIS) applications focusing on
- Freight Real-time Traveler Information
- Freight Dynamic Route Guidance
- Drayage Optimization
Mean duration of the Deployment Test’s supply chain

Time = 0 → 160 hours

Manufacturer’s Factory → Distribution Center

Shipment awaiting information exchanges to take place

Shipment awaiting physical state change, such as shipment consolidation

Shipment is in movement

Data are based on preliminary qualitative findings collected during baseline activities along the target supply chain.
Transition → C-TIP Applications to FRATIS

Electronic Freight Management Initiative

C-TIP - Intermodal Exchange (IMEX), Wireless Drayage Updating (WDU), Real Time Traffic Monitoring (RTTM), Dynamic Route Guidance (DRG)

Scalable and Transferable

- **Rail-to-rail**: cross-continental moves
- **Port-to-rail**: where on-dock rail facilities do not exist
- **Port-to-truck**: port to distribution centers
- **Airport-to-truck**: airport to distribution centers
- **Over the road freight movements**
Freight Real-Time Traveler Information

- **Problem Addressed**
 - Uncertainties in traffic congestion and weather conditions pose a productivity and safety risks to freight traffic

- **Description**
 - Road Weather Information
 - Truck Parking
 - Truck Scales
 - Permitting
 - Road Construction
 - Bridge Clearance
 - Bridge Weight Formulas
 - Travel Time Metrics
Freight Dynamic Route Guidance

- **Problem Addressed:**
 - Lack of awareness of the best routes along congested corridors result in increased delays and costs to freight traffic

- **Description**
 - Road Construction
 - Traffic Congestion
 - Predicted Travel Times
 - Freight Traveler Specific
 - Build on the C-TIP Real Time Traffic Monitoring (RTTM) and Dynamic Route Guidance (DRG) applications for best route between freight facilities
Drayage Optimization

- **Problem Addressed**
 - Reduce freight delays to ensure uninterrupted operations within the terminal/warehouse

- **Description**
 - Optimize drayage operations so that load movements are coordinated between freight facilities
 - Maximize Loaded Trips and Minimize Empty Trips
 - Port and Intermodal Gate Processing Information
iPhone / Android Applications
Systems built to avoid DRIVER DISTRACTION

Select the “FRATIS” application
FRATIS Operating Scenario

FRATIS Components

- Intermodal Exchange (IMEX)
- Wireless Drayage Updating (WDU)
- Real Time Traffic Monitoring (RTTM)
- Dynamic Route Guidance (DRG)

U.S. Department of Transportation
Trucks and Mobility

- **Dynamic Mobility – Freight Advanced Traveler Information (FRATIS)**
 - **Objective**: One of the DMA Mobility Bundles, and is looking to specifically address the concept development and needs refinement for a related collection (bundle) of Freight related high-priority applications, collectively identified as Freight Advanced Traveler Information System (FRATIS).
 - Awarded to Cambridge Systematics
 - Con Ops development and Functional Requirements of the following freight applications:
 - Freight Real-Time Traveler Information with Performance Measures
 - Drayage Optimization
 - Freight Dynamic Route Guidance

- **Project Accomplishments to date**
 - Captured User Requirements 3/1/2012
 - Final ConOps 3/30/2012
 - Completed assessment of transformative benefits 4/16/2012
 - Assessment of Relevant Prior and Ongoing Research 4/30/2012
 - Final Functional Requirements 4/30/2012

- **Planned accomplishments**
 - Final Report on Test Readiness Assessment 5/30/2012
 - Award proto-type testing project(s) 7/1/2012
One more Truck item..............

Multistate Corridor Operations and Management Awards
Multistate Corridor Operations and Management Awards

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great Northern Corridor (MT, ID, MN, ND)</td>
<td>Multistate Planning and Development Study</td>
<td>$300K</td>
</tr>
<tr>
<td>Wisconsin DOT (IL, IN, MN, WI, Ontario, CN)</td>
<td>Work Zone and Traveler Information across Corridor using an innovative, regional planning process</td>
<td>$900K</td>
</tr>
<tr>
<td>North/West Passage Corridor Coalition (WA, ID, MT, WY, ND, SD, MN)</td>
<td>Rural emphasis on multi-corridor traveler information</td>
<td>$800K</td>
</tr>
<tr>
<td>West Coast Corridor Clean, Green and Smart Corridor Development (AL, WA, OR, CA)</td>
<td>Alternative Fuel study across a corridor</td>
<td>$400K</td>
</tr>
<tr>
<td>I-15 Mobility Alliance (NV, UT, CA)</td>
<td>Multi-modal real time travel dissemination using GPS and focused on rural setting</td>
<td>$1.5M</td>
</tr>
</tbody>
</table>
FOR MORE INFORMATION

www.its.dot.gov

Imagine that...
...a car a mile ahead of you on the highway sends an alert to your vehicle, warning you of upcoming slippery conditions that are causing drivers to slam on their brakes.

U.S. DOT will host Free Public Meeting and Webinar for the Integrated Dynamic Transit Operations (IDTO)
The IDTO public meeting will bring stakeholders together as part of an interactive forum. Read more...

Spotlight

- ITS Architecture Made Easier Using Turbo Architecture: An Overview of NHtI's New Web-based Turbo Architecture Course 1/10/12
- U.S. DOT Announces Public Meeting for Two Connected Vehicle Concepts for Traffic Management 1/8/12
- Letter from the Director Congratulating ITS JPO Staff Award Winners 12/23/11

More News>>

Our Current Research

Applications
- Vehicle-to-Vehicle Safety
- Vehicle-to-Infrastructure Safety
- Real Time Data Capture
- Dynamic Mobility Applications
- Environment
- Road Weather

More >>