ADAPTIVE SIGNAL CONTROL, IS IT RIGHT FOR MY AGENCY?

Presented by: Adam Moser, P.E.
WHAT ‘EXACTLY’ IS ADAPTIVE SIGNAL CONTROL?

- It’s a Good Question
 - FHWA Every Day Counts Initiative States: “Outdated signal timing contributes to traffic congestion; this doesn't need to be commonplace. Adaptive signal control technologies can use real-time traffic information to reduce congestion by determining which lights should be red and which should be green.”*
 - The answer will vary by who you ask

- What requirements can be agreed on?
 - It should adapt to unexpected changes in real-time traffic conditions
 - It should continuously distribute green time and phasing as necessary for all traffic movements
 - It should improve travel time reliability by keeping progression at all times of the day
 - It should reduce congestion, delay and accidents by creating smoother flow between signalized intersections
 - It should prolong the effectiveness of traffic signal timing and reduce complaints

* www.fhwa.dot.gov/everydaycounts/technology/adsc/
WHAT ‘EXACTLY’ IS ADAPTIVE SIGNAL CONTROL?
• Adaptive Operation (and arguments) varies by software manufacturer/vendor:
 – Should it have a ‘fixed’ cycle time it must adhere to or be dynamic? How fast should the cycle adapt (I.E. transition effects)?
 – Should it be a peer to peer only system (no cycle length)?
 – Should it be open architecture/algorithms, or continue proprietary?
 – Should it reside locally in the cabinet, or controlled by central?
 – What should the degree of complexity be? Should it be easily adjusted by System Operators, by Signal Engineers, or ONLY by Software Developers (remotely)?

PROACTIVE? OR REACTIVE!!
ADAPTIVE SOFTWARE – “OLDER” DEPLOYED SYSTEMS

- **ACS Lite** – Siemens, Econolite, PEEK, McCain

- **InSync** – Rhythm Engineering

- **SCATS** – Roads and Traffic Authority (RTA) of New South Wales, Australia... TransCore is a distributor for North America

- **SCOOT** – UK developer... Siemens is a distributor for North America

- **RHODES** – University of Arizona & Gardner Systems (bought by Siemens), Arizona State University now holds rights

- **OPAC** – Telvent (Farradyne) & UMASS, now Schneider Electric/Telvent
ADAPTIVE SOFTWARE – “NEWER” SYSTEMS

- Other Systems that are in various stages of development and use in the US:
 - QuicTrac (McCain)
 - Synchro Green (Trafficware/Naztec)
 - Centracs Adaptive (Econolite) – Builds off their version of ACS Lite
 - Adaptive Decision Support System (ACDSS) – KLD developed for NYCDOT
 - LA ATCS - McTrans holds rights - developed for Los Angeles, looks to sell to other states
 - NWS VOYAGE – Northwest Signal
 - PTV BALANCE - VISSIM and modeling adaptive software, used in Europe - trying to test in US
 - SPOT/UTOPIA - Italy, 1985, Scandinavian countries use it too – trying to test in US
 - Many others trying modules and algorithms out in their regular controller firmware releases
Some Approximate Initial Costs for Adaptive System Detection

<table>
<thead>
<tr>
<th>Adaptive System</th>
<th>Detection Cost</th>
<th>Additional hardware cost</th>
<th>Average software developer cost</th>
<th>Average Total per Intersection Cost(1)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS Lite</td>
<td>$21,000</td>
<td>$0</td>
<td>$4,500</td>
<td>$25,500</td>
<td>Per intersection cost of development is relatively unknown due to FHWA funding and the lack of new deployments</td>
</tr>
<tr>
<td>SCATS</td>
<td>$12,000</td>
<td>$0</td>
<td>$14,000</td>
<td>$26,000</td>
<td>Developer cost varies from $13k - $21k per intersection, depending on project size and/or adding to existing system</td>
</tr>
<tr>
<td>InSync</td>
<td>Included</td>
<td>Included</td>
<td>$25,000*</td>
<td>$30,000</td>
<td>Includes pedestrian optimization module, but not module to use existing detection with the manufacturer's detection (+$5k)</td>
</tr>
<tr>
<td>RHODES</td>
<td>$38,000</td>
<td>$1,500</td>
<td>$3,000</td>
<td>$42,500</td>
<td>If run centrally, then additional hardware cost can be subtracted, cost is for adding to existing system</td>
</tr>
<tr>
<td>OPAC</td>
<td>$38,000</td>
<td>$1,500</td>
<td>$3,500</td>
<td>$43,000</td>
<td>“central only” solution currently available. Need field processor. Cost is for adding to existing system</td>
</tr>
<tr>
<td>SCOOT</td>
<td>$38,000</td>
<td>$0</td>
<td>$10,000</td>
<td>$48,000</td>
<td>Developer cost varies from $10k - $18k per intersection, depending on size and/or adding to existing system</td>
</tr>
</tbody>
</table>

(1) NOTE: Does not include cost for comm network, central system hardware, or specific signal controller/cabinet requirements

* Includes InSync Video Detection Solution – not separated out
ADAPTIVE DEPLOYMENTS NATIONWIDE

Source: Aleksandar Stevanovic, Assistant Professor, Florida Atlantic University
• Peninsula County - west of the City of Tampa. Size approx 280 sq mi
• Home of Clearwater and St Pete Beaches
• Just under 1 million residents
• 24 incorporated municipalities
• Large retirement community
 • 43 Golf Courses
 • 1059 Tennis Courts
 • 2865 Shuffle Board Courts
• MLB: Tampa Bay Rays – St Pete
• Spring Training/Minor League:
 • Phillies (Clearwater)
 • Blue Jays (Dunedin)
• Most densely populated county in FL
 • Only 4% undeveloped
 • Only 17 miles of Interstate
WHAT’S THE TRAFFIC LIKE?

Pinellas County Major Arterials AADT = 25,000 – 97,000
ADAPTIVE DECISION (PRE-ADAPTIVE SYS. ENG.)

- Local ITS Steering Committee formed
 - Committee made up of State and Local government officials, members of the general public, and transportation professionals
 - Visited and gathered information on existing and emerging systems throughout the U.S.
 - Weighed pro’s and con’s of central software and adaptive signal systems
 - Roughly estimated needs for Operations and Maintenance

- In early 2000’s, committee reviewed 4 adaptive systems in detail:
 - OPAC (FHWA RT-TRACS software)
 - RHODES (FHWA RT-TRACS software)
 - SCATS (Australia)
 - SCOOT (UK)
ADAPTIVE SYSTEMS DEPLOYED 2004 - 2012

- Sydney Coordinated Adaptive Traffic System (SCATS) - 04/05
 - 13 intersections in existing NEMA TS1 cabinets with 2070LN controllers
 - Pasco County, FL – Stand Alone System

- Optimized Policies for Adaptive Control (OPAC) - 05/06
 - 53 intersections in both 170/332 cabinets and NEMA TS2 cabinets, full 2070 (now can run on 2070L controllers)
 - Pinellas County, FL, Integrated with MIST

- Realtime Hierarchical Optimized Distributed Effective System (RHODES) – 05/06
 - 22 intersections in both 170/332 cabinets and NEMA TS2 cabinets, full 2070 (now can run on 2070L controllers)
 - Pinellas County, FL, Originally Integrated with Siemens’ I2TMS, now with MIST

- InSync (Chosen in 2011 for Florida Test Bed) – Jan 2012
 - 9 intersections in NEMA TS2 cabinets with 2070L controllers running Econolite ASC3 Firmware
 - Pinellas County, FL, CentralSync Client software from Vendor, Controller still reports status to MIST (NTCIP)
Why Try Four Different Systems In One Area?

Feds (RITA personnel) believed that Adaptive Signal Control is not ‘One Size Fits All’, and Pinellas County ITS Steering Committee agreed. This idea was based on:

- Saturated - Highly Variable Volumes
- Medium Congestion (certain times of the day)
- Low Congestion with spurts in unpredictable volume

Other Factors Considered:

- Directional Peaks (more predictable) vs 50/50 Split
- Major/Minor Arterial Network vs Grid Networks
- High vs. Lower Capital Cost
- Ease of Operation and Maintenance
- Central vs Local operation
- Outside influences (Peds, Preempt, etc)
Areas of Deployment - OPAC

US 19:
- 50/55 mph
- ~1 mile spacing
- 6 - 8 lane divided arterial

OPAC
Roadway Characteristics:
- AM Peak: North to South
- PM Peak: South to North
- Off-peak: 50/50 split

East Lake/McMullen Booth:
- 45/50 mph
- 1/2 - 1 mile signal spacing
- 4 - 6 lane divided arterial
Areas of Deployment - InSync

Roadway Characteristics:
- AM, PM, Off-peak: 50/50 bi-directional
- Countywide Mall east end
- Downtown Dunedin/Gulf west end

SR 580/Main St:
- 40 mph
- 1/4 - 1/2 mile signal spacing
- 6 lane undivided arterial
WHAT KIND OF RESULTS CAN I EXPECT FROM ADAPTIVE SYSTEMS???

- Before and After Reports and Claims Vary... Reasons:
 - Depends on ‘Before’ operational scenario and timing
 - Type of corridor/saturation (over-capacity)
 - **Independent Study** or Provided by Software Vendor
 - Time of Day, Days of Week – Measure Weekends!
 - Generally aim toward a 10 – 15% improvement in travel time, all things considered
 - Remember to incorporate other Performance Measures other than travel time, such as:
 - Safety (reduction in accidents – approx $28,000 cost per accident)
 - Environmental (reduction in carbon footprint – carbon credits can be sold!)
• Independent before/after study to determine the RT-TRACS software operation versus traditional time-of-day signal plans – Measured both end to end travel time and major intersection delay

• Study determined that OPAC US19 travel times were reduced by an average of 7.5%, with peak travel times dropping by as much as 25%

• Study determined that RHODES SR60 travel times were reduced by an average of 8% consistent in most all time periods

• Intersection Delay was slightly higher for side street and left turns, but volume of vehicles on all approaches showed overall improvement

• The results show an average of $1.3 million in annual fuel savings alone (both corridors – 42 intersections) vs. TOD plans

• Benefit to Cost ratio is currently calculated at 7:1
PERFORMANCE MEASURES – TRAVEL TIME

<table>
<thead>
<tr>
<th>Gulf-to-Bay Before/After Travel Time Studies</th>
<th>Westbound</th>
<th>Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBC 2006</td>
<td>Adaptive 2006</td>
<td>AMP</td>
</tr>
<tr>
<td>Before</td>
<td>After</td>
<td>12:06</td>
</tr>
<tr>
<td>% Improvement</td>
<td></td>
<td>10:23</td>
</tr>
<tr>
<td>AMP</td>
<td>11:02</td>
<td>14.19%</td>
</tr>
<tr>
<td>AMO</td>
<td>10:52</td>
<td>4.59%</td>
</tr>
<tr>
<td>PMO</td>
<td>12:04</td>
<td>5.85%</td>
</tr>
<tr>
<td>PMP</td>
<td>13:13</td>
<td>0.43%</td>
</tr>
<tr>
<td>Adaptive 2006</td>
<td>TBC vs Adapt 06</td>
<td>AMP</td>
</tr>
<tr>
<td>% Improvement</td>
<td></td>
<td>10:11</td>
</tr>
<tr>
<td>AMP</td>
<td>7.70%</td>
<td>10:23</td>
</tr>
<tr>
<td>AMO</td>
<td>7.52%</td>
<td>10:03</td>
</tr>
<tr>
<td>PMO</td>
<td>11.88%</td>
<td>10:38</td>
</tr>
<tr>
<td>PMP</td>
<td>6.81%</td>
<td>12:19</td>
</tr>
<tr>
<td>Adaptive 2008</td>
<td>TBC vs Adapt 08</td>
<td>AMP</td>
</tr>
<tr>
<td>% Improvement</td>
<td></td>
<td>9:36</td>
</tr>
<tr>
<td>AMP</td>
<td>9:42</td>
<td>19.83%</td>
</tr>
<tr>
<td>AMO</td>
<td>9:58</td>
<td>5.38%</td>
</tr>
<tr>
<td>PMO</td>
<td>9:54</td>
<td>10.94%</td>
</tr>
<tr>
<td>PMP</td>
<td>10:24</td>
<td>11.49%</td>
</tr>
<tr>
<td>Adapt 06 vs Adapt 08</td>
<td>% Improvement</td>
<td>AMP</td>
</tr>
<tr>
<td>% Improvement</td>
<td></td>
<td>12.99%</td>
</tr>
<tr>
<td>AMP</td>
<td>7.82%</td>
<td>0.33%</td>
</tr>
<tr>
<td>AMO</td>
<td>18.92%</td>
<td>7.99%</td>
</tr>
<tr>
<td>PMO</td>
<td>18.67%</td>
<td>7.99%</td>
</tr>
<tr>
<td>Eastbound</td>
<td>% Improvement</td>
<td>5.73%</td>
</tr>
</tbody>
</table>

- Typically travel time improvements range from 7% - 20%
- Travel time improvement is at the expense of shorter left turn and side street green times (added delay on side streets and left turns)
Environmental Sensor Data Measuring CO and Particulate Matter
PERFORMANCE MEASURES - SAFETY

REAR END ACCIDENTS BEFORE / AFTER ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>SR 60</th>
<th>US 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEFORE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/1/2004 - 9/30/2006</td>
<td>261 135 172 0</td>
<td>1531 604 995 3</td>
</tr>
<tr>
<td>AFTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/1/2006 - 9/30/2008</td>
<td>248 87 114 0</td>
<td>1344 505 879 0</td>
</tr>
<tr>
<td>Total Reductions</td>
<td>13 48 58 0</td>
<td>187 99 116 3</td>
</tr>
<tr>
<td>Percent Reduction</td>
<td>5.0% 35.6% 33.7% 0.0%</td>
<td>12.2% 16.4% 11.7% 100.0%</td>
</tr>
</tbody>
</table>
• Most corridor travel time before/after studies range from 5 – 20% reduction for ACS Lite
OTHER ADAPTIVE RESULTS (InSync)

<table>
<thead>
<tr>
<th>Peak Period</th>
<th>Direction</th>
<th>Average Travel Time (Seconds)</th>
<th>Average Number of Stops</th>
<th>Average Speed (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before</td>
<td>After</td>
<td>Change</td>
</tr>
<tr>
<td>Weekday AM</td>
<td>EB</td>
<td>320.4</td>
<td>298.4</td>
<td>-9.6%</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>206.0</td>
<td>237.4</td>
<td>-19.5%</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>308.2</td>
<td>287.0</td>
<td>-6.8%</td>
</tr>
<tr>
<td>Weekday AM Off Peak</td>
<td>EB</td>
<td>274.0</td>
<td>209.4</td>
<td>-23.6%</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>224.6</td>
<td>210.4</td>
<td>-6.5%</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>249.3</td>
<td>209.0</td>
<td>-15.8%</td>
</tr>
<tr>
<td>Weekday Midday</td>
<td>EB</td>
<td>237.4</td>
<td>241.0</td>
<td>1.6%</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>251.0</td>
<td>218.9</td>
<td>-24.7%</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>254.4</td>
<td>228.4</td>
<td>-10.8%</td>
</tr>
<tr>
<td>Weekend Midday Off Peak</td>
<td>EB</td>
<td>272.2</td>
<td>190.4</td>
<td>-40.1%</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>278.3</td>
<td>208.4</td>
<td>-25.1%</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>271.6</td>
<td>237.0</td>
<td>-23.5%</td>
</tr>
<tr>
<td>Weekday PM</td>
<td>EB</td>
<td>304.8</td>
<td>325.2</td>
<td>7.9%</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>288.2</td>
<td>281.1</td>
<td>-2.7%</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>291.4</td>
<td>306.7</td>
<td>20.9%</td>
</tr>
</tbody>
</table>

- Most corridor travel time before/after studies range from 10 – 20% reduction, sometimes higher depending on ‘before’ condition (i.e. signals ran free before, or very outdated timing plan)
PUBLIC COMPLAINTS FOR MOST ADAPTIVE SYSTEMS

• SHORT CYCLE (CYCLE FAILURE)
 – Some side street & left turn phases tend to only serve min. green due to high demand on main phases (reducing overall delay by counts)
 – Phase skipping (could be a problem for adaptive software that runs phase pairs not in sequence)

• UNPREDICTABLE
 – Many citizens have complained that they don’t know when the light will turn green and can’t ‘plan’ accordingly (they get used to pre-timed plans and route selection)
 – Thinks it may have ‘skipped’ them – Dynamic Phase Sequence algorithms

• DON’T THINK IT WORKS
 – Expectations are too high
 – Think they should be getting all green lights wherever they go
KEY QUESTIONS TO ANSWER BEFORE MAKING THE STEP!

• Start Gathering Data With Some Simple Questions:
 – Have I exhausted all other ‘TIMING’ avenues?
 – Who Are My Stakeholders?
 – Do I Have (Can I Get) Funding (see above)?
 – Is My Existing Hardware Compatible?
 • Detection Compatibility
 • Controller Compatibility
 • Communications Network Requirements
 • Do I Need a Central Software System to Manage It?
 • Does It Play Nicely With My Existing Central Software System?
 – What’s My Operations and Maintenance Commitment?
 • Gather Annual Cost Analysis:
 – Operations - Personnel Requirements, Computer/Server life/cycle costs, Database Requirements
 – Maintenance – Added Detection, IT/Network, Training
 – Software – Does it require any annual contracts?
QUESTIONS (CON’T)

- Start Gathering Data With Some Simple Questions (con’t):
 - Type of Roadway
 - Is the roadway already over capacity?
 - Issue to Solve - Mostly Directional, Bi-directional, or both
 - Variable or Constant Speed on Corridor
 - Intersection spacing – ¼ mile or less, 1 mile/high speed, isolated, etc.
 - Grid Network or Primary/Secondary Arterial Network
 - Pedestrians – Ped Signals/Crosswalks
 - Preemption – # of Activations (i.e. by an active fire station)
 - Light Rail/Transit Signal Priority
 - How Can I Specify A System That Works With All The Above Without Naming It?
 - Each System Has Proprietary protocols/Algorithms
 - Specific parameters for configuration & tweaking
 - Detection Requirements Vary
 - ASK THE RIGHT QUESTIONS OF THE POTENTIAL VENDOR!!
 - Can Use RFP/RFQ process instead of low bid...
SYSTMS ENGINEERING PROCESS FOR ADAPTIVE

1. Identify portions of the regional ITS architecture being implemented
2. Identification of participating agencies roles and responsibilities
3. Requirements definitions
4. Analysis of technology options to meet requirements
5. Procurement options
6. Identification of applicable ITS standards and testing procedures
7. Procedures and resources necessary for operations and management of the system
QUESTIONS

Adam Moser, P.E.
Gresham, Smith and Partners, Inc

Have Answers, Will Travel

615-770-8271
adam_moser@gspnet.com